The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often as...The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.展开更多
Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered ...Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered as two disturbing factors which make attitude pursuit law impossible.Therefore,general attitude pursuit guidance law did not account for this two disturbing factors,because with those disturbing factors,it is difficult to apply.To solve the problem,the principle of strap-down seeker detecting target is investigated,the mathematical control model is established,then a modified attitude pursuit guidance law which employs the angular correction for those two disturbing factors is presented.It is proved that the modified attitude pursuit guidance law is appropriated to both in the presence of the additional angle of attack or sideslip via the simulations with the mathematical control model and Monte-Carlo method.展开更多
Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the eff...Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.展开更多
The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagn...The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.展开更多
This work presents the use of extended Modified Lambert Beer(MLB)model for accurate andcontinuous monitoring of percent blood carboxyhemoglobin(COHb)(SCO)and oxyhemoglobin(OxyHb)saturation(SO,)via a fitting procedure....This work presents the use of extended Modified Lambert Beer(MLB)model for accurate andcontinuous monitoring of percent blood carboxyhemoglobin(COHb)(SCO)and oxyhemoglobin(OxyHb)saturation(SO,)via a fitting procedure.This quantification technique is based on theabsorption characteristics of hemoglobin derivatives in the wavelength range of 520-600 nm togive the best estimates of the required parameters.A comparison of the performance of the developed model and MILB law is made using attenuation data from Monte Carlo simulations for a two-layered skin model.The results revealed a lower mean absolute error of 0.4%in the valuesestimated by the developed model as compared to 10%that is given by the MILB law.This studyshowed that the discussed approach is able to provide consistent and accurate measurement ofblood SO,and SCO across diferent skin pigmen tations suggesting that it may potentially be usedas an alternative means for clinical diagnosis of carbon monoxide(CO)poisoning.展开更多
In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model...In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.展开更多
In this study, the flow of a fourth order fluid in a porous half space is modeled. By using the modified Darcy's law, the flow over a suddenly moving flat plate is studied numerically. The influence of various parame...In this study, the flow of a fourth order fluid in a porous half space is modeled. By using the modified Darcy's law, the flow over a suddenly moving flat plate is studied numerically. The influence of various parameters of interest on the velocity profile is revealed.展开更多
In this paper, we have discussed the linear stabil- ity analysis of the electrified surface separating two coaxial Oldroyd-B fluid layers confined between two impermeable rigid cylinders in the presence of both interf...In this paper, we have discussed the linear stabil- ity analysis of the electrified surface separating two coaxial Oldroyd-B fluid layers confined between two impermeable rigid cylinders in the presence of both interfacial insoluble surfactant and surface charge through porous media. The case of long waves interfacial stability has been studied. The dispersion relation is solved numerically and hence the ef- fects of various parameters are illustrated graphically. Our results reveal that the influence of the physicochemical pa- rameterβ is to shrink the instability region of the surface and reduce the growth rate of the unstable normal modes. Such important effects of the surfactant on the shape of in- terfacial structures are more sensitive to the variation of the βcorresponding to non-Newtonian fluids-model compared with the Newtonian fluids model. In the case of long wave limit, it is demonstrated that increasing r, has a dual role in- fluence (de-stabilizing effects) depending on the viscosity of the core fluid. It has a destabilizing effect at the large values of the core fluid viscosity coefficient, while this role is ex- changed to a regularly stabilizing influence at small values of such coefficient.展开更多
In this paper,research of aftershock mechanisms is reviewed,including heterogeneity of medium and stress,mechanical loading,fluid intrusion and stress corrosion,and ratestate dependence.Previous studies have indicated...In this paper,research of aftershock mechanisms is reviewed,including heterogeneity of medium and stress,mechanical loading,fluid intrusion and stress corrosion,and ratestate dependence.Previous studies have indicated that the heterogeneity of media and stress is the basic premise of aftershocks generated.From the point view of mechanics,transient creep and afterslip can explain the decay of aftershocks in a short time after a mainshock and the relaxation of stress tends to interpret the characteristics of long-term aftershocks.Fluid intrusion and stress corrosion control the evolution process of the aftershocks under certain conditions.The interaction between the faults perturbed by the mainshock always exists during the aftershock activities.All kinds of models and the theories want to comply with the two basic power-law relationships---the G-R law and Omori law to some extent.展开更多
The aim of the research is to study the propagation of a hydraulic fracture with tortuosity due to contact areas between touching asperities on opposite crack walls. The tortuous fracture is replaced by a model symmet...The aim of the research is to study the propagation of a hydraulic fracture with tortuosity due to contact areas between touching asperities on opposite crack walls. The tortuous fracture is replaced by a model symmetric partially open fracture with a hyperbolic crack law and a modified Reynolds flow law. The normal stress at the crack walls is assumed to be proportional to the half-width of the model fracture. The Lie point symmetry of the nonlinear diffusion equation for the fracture half-width is derived and the general form of the group invariant solution is obtained. It was found that the fluid flux at the fracture entry cannot be prescribed arbitrarily, because it is determined by the group invariant solution and that the exponent n in the modified Reynolds flow power law must lie in the range 2 < <em>n</em> < 5. The boundary value problem is solved numerically using a backward shooting method from the fracture tip, offset by 0 < <em>δ</em> <span style="white-space:nowrap;">≪</span> 1 to avoid singularities, to the fracture entry. The numerical results showed that the tortuosity and the pressure due to the contact regions both have the effect of increasing the fracture length. The spatial gradient of the half-width was found to be singular at the fracture tip for 3 < <em>n</em> < 5, to be finite for the Reynolds flow law <em>n</em> = 3 and to be zero for 2 < <em>n</em> < 3. The thin fluid film approximation breaks down at the fracture tip for 3 < <em>n</em> < 5 while it remains valid for increasingly tortuous fractures with 2 < <em>n</em> < 3. The effect of the touching asperities is to decrease the width averaged fluid velocity. An approximate analytical solution for the half-width, which was found to agree well with the numerical solution, is derived by making the approximation that the width averaged fluid velocity increases linearly with distance along the fracture.展开更多
Drawing upon the electromagnetic conversion formulas in a continuous conductive medium,an extensive examination for total current law and Faraday’s law of electromagnetic induction(Faraday’s law)is undertaken to exp...Drawing upon the electromagnetic conversion formulas in a continuous conductive medium,an extensive examination for total current law and Faraday’s law of electromagnetic induction(Faraday’s law)is undertaken to expound on the laws of electromagnetic induction and conversion.The longitudinal wave term of Faraday’s law is reinstated to render it suitable for theoretical derivation of the LEM(Longitudinal Electromagnetic Wave)equation.Subsequently,we formulate the wave and energy equations for electric P-wave based on reevaluated total current law and modified Faraday’s law;meanwhile proposing a propagation mode that reveals its mechanisms absorbing free energy for LEM waves in a conductor predicated on interaction between scalar electric field and vortex magnetic field.Furthermore,through theoretical derivations based on LEM waves,insights into concealed relationships between electric P-wave and electromagnetism scalar potential are disclosed alongside the constraint equation between the wave velocities of LEM wave and TEM(Transverse Electromagnetic)waves,unveiling the significance of LEM wave.展开更多
A floating partial space elevator(PSE)is a PSE with a floating main satellite.This work aims to keep the orbital radius of the main satellite of a floating PSE in cargo transposition without the use of thrusts.A six-d...A floating partial space elevator(PSE)is a PSE with a floating main satellite.This work aims to keep the orbital radius of the main satellite of a floating PSE in cargo transposition without the use of thrusts.A six-degree-of-freedom two-piece dumbbell model was built to analyze the dynamics of a floating PSE.By adjusting the climber’s moving speed and rolling of the end body,the main satellite’s orbital radius can be kept.A novel control strategy using a proportional shrinking horizon model predictive control law containing a self-stability modified law is proposed to stabilize both the orbital and libration states to regulate the speed of only the climber.Simulation results validated the proposed control strategy.The system provides a successful approach to the desired equilibrium by the end of the transposition.展开更多
We derive the Misner-Sharp-like masses Dilaton-Axion black hole by using the modified first of the Reissner-Nordstr6m black hole and the Einstein-Maxwell- law of thermodynamics. Their surface tensions are investigated...We derive the Misner-Sharp-like masses Dilaton-Axion black hole by using the modified first of the Reissner-Nordstr6m black hole and the Einstein-Maxwell- law of thermodynamics. Their surface tensions are investigated. For the Reissner-NordstrSm black hole, the outer horizon radius is treated as a variable and the effective temperature is introduced. For the Einstein-Maxwe11-Dilaton-Axion black hole, the outer horizon radius, the angular momentum unit mass and the parameter b are seen as three independent variables, and the mass, the horizon area and the angular momentum are functions of them.展开更多
In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background...In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.展开更多
基金Research Funds from North University of China(No.130087)
文摘The mean path length(MPL)of photons is a critical parameter to calculate tissue absorption coefficient as well as blood oxygenation using modified Beer-Lambert law,where in the differential path factor(DPF)is often assumed as constant over range of tissue absorption.By utilizing the Monte Carlo(MC)simulation of photon migrations in the leg,this study used four approaches to estimate MPL,and compared them with that determined by the MPL definition.The simulation results indicate that the DPF is remarkably affected by tissue absorption,at approximate 10% variation.A linear model is suggested to calculate MPL for measurements of tissue absorption as well as blood oxygenation using modified Beer-Lambert law.
文摘Attitude pursuit guidance law is suitable for low cost missiles.A strap-down seeker is used to achieve this guidance law.The additional angles of attack or sideslip caused by wind and by control system are considered as two disturbing factors which make attitude pursuit law impossible.Therefore,general attitude pursuit guidance law did not account for this two disturbing factors,because with those disturbing factors,it is difficult to apply.To solve the problem,the principle of strap-down seeker detecting target is investigated,the mathematical control model is established,then a modified attitude pursuit guidance law which employs the angular correction for those two disturbing factors is presented.It is proved that the modified attitude pursuit guidance law is appropriated to both in the presence of the additional angle of attack or sideslip via the simulations with the mathematical control model and Monte-Carlo method.
文摘Modified Theories of Gravity include spin dependence in General Relativity, to account for additional sources of gravity instead of dark matter/energy approach. The spin-spin interaction is already included in the effective nuclear force potential, and theoretical considerations and experimental evidence hint to the hypothesis that Gravity originates from such an interaction, under an averaging process over spin directions. This invites to continue the line of theory initiated by Einstein and Cartan, based on tetrads and spin effects modeled by connections with torsion. As a first step in this direction, the article considers a new modified Coulomb/Newton Law accounting for the spin-spin interaction. The physical potential is geometrized through specific affine connections and specific semi-Riemannian metrics, canonically associated to it, acting on a manifold or at the level of its tangent bundle. Freely falling particles in these “toy Universes” are determined, showing an interesting behavior and unexpected patterns.
文摘The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.
文摘This work presents the use of extended Modified Lambert Beer(MLB)model for accurate andcontinuous monitoring of percent blood carboxyhemoglobin(COHb)(SCO)and oxyhemoglobin(OxyHb)saturation(SO,)via a fitting procedure.This quantification technique is based on theabsorption characteristics of hemoglobin derivatives in the wavelength range of 520-600 nm togive the best estimates of the required parameters.A comparison of the performance of the developed model and MILB law is made using attenuation data from Monte Carlo simulations for a two-layered skin model.The results revealed a lower mean absolute error of 0.4%in the valuesestimated by the developed model as compared to 10%that is given by the MILB law.This studyshowed that the discussed approach is able to provide consistent and accurate measurement ofblood SO,and SCO across diferent skin pigmen tations suggesting that it may potentially be usedas an alternative means for clinical diagnosis of carbon monoxide(CO)poisoning.
基金supported by the National Natural Science Foundation of China (Nos.41974068 and 41574040)Key International S&T Cooperation Project of P.R.China (No.2015DFA21260)。
文摘In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.
文摘In this study, the flow of a fourth order fluid in a porous half space is modeled. By using the modified Darcy's law, the flow over a suddenly moving flat plate is studied numerically. The influence of various parameters of interest on the velocity profile is revealed.
文摘In this paper, we have discussed the linear stabil- ity analysis of the electrified surface separating two coaxial Oldroyd-B fluid layers confined between two impermeable rigid cylinders in the presence of both interfacial insoluble surfactant and surface charge through porous media. The case of long waves interfacial stability has been studied. The dispersion relation is solved numerically and hence the ef- fects of various parameters are illustrated graphically. Our results reveal that the influence of the physicochemical pa- rameterβ is to shrink the instability region of the surface and reduce the growth rate of the unstable normal modes. Such important effects of the surfactant on the shape of in- terfacial structures are more sensitive to the variation of the βcorresponding to non-Newtonian fluids-model compared with the Newtonian fluids model. In the case of long wave limit, it is demonstrated that increasing r, has a dual role in- fluence (de-stabilizing effects) depending on the viscosity of the core fluid. It has a destabilizing effect at the large values of the core fluid viscosity coefficient, while this role is ex- changed to a regularly stabilizing influence at small values of such coefficient.
基金sponsored by the National Key Technology R&D Program of China(2012BAK19B0205)Key Foundation of Earthquake Administration of Shandong Province(JJ1308Y)
文摘In this paper,research of aftershock mechanisms is reviewed,including heterogeneity of medium and stress,mechanical loading,fluid intrusion and stress corrosion,and ratestate dependence.Previous studies have indicated that the heterogeneity of media and stress is the basic premise of aftershocks generated.From the point view of mechanics,transient creep and afterslip can explain the decay of aftershocks in a short time after a mainshock and the relaxation of stress tends to interpret the characteristics of long-term aftershocks.Fluid intrusion and stress corrosion control the evolution process of the aftershocks under certain conditions.The interaction between the faults perturbed by the mainshock always exists during the aftershock activities.All kinds of models and the theories want to comply with the two basic power-law relationships---the G-R law and Omori law to some extent.
文摘The aim of the research is to study the propagation of a hydraulic fracture with tortuosity due to contact areas between touching asperities on opposite crack walls. The tortuous fracture is replaced by a model symmetric partially open fracture with a hyperbolic crack law and a modified Reynolds flow law. The normal stress at the crack walls is assumed to be proportional to the half-width of the model fracture. The Lie point symmetry of the nonlinear diffusion equation for the fracture half-width is derived and the general form of the group invariant solution is obtained. It was found that the fluid flux at the fracture entry cannot be prescribed arbitrarily, because it is determined by the group invariant solution and that the exponent n in the modified Reynolds flow power law must lie in the range 2 < <em>n</em> < 5. The boundary value problem is solved numerically using a backward shooting method from the fracture tip, offset by 0 < <em>δ</em> <span style="white-space:nowrap;">≪</span> 1 to avoid singularities, to the fracture entry. The numerical results showed that the tortuosity and the pressure due to the contact regions both have the effect of increasing the fracture length. The spatial gradient of the half-width was found to be singular at the fracture tip for 3 < <em>n</em> < 5, to be finite for the Reynolds flow law <em>n</em> = 3 and to be zero for 2 < <em>n</em> < 3. The thin fluid film approximation breaks down at the fracture tip for 3 < <em>n</em> < 5 while it remains valid for increasingly tortuous fractures with 2 < <em>n</em> < 3. The effect of the touching asperities is to decrease the width averaged fluid velocity. An approximate analytical solution for the half-width, which was found to agree well with the numerical solution, is derived by making the approximation that the width averaged fluid velocity increases linearly with distance along the fracture.
文摘Drawing upon the electromagnetic conversion formulas in a continuous conductive medium,an extensive examination for total current law and Faraday’s law of electromagnetic induction(Faraday’s law)is undertaken to expound on the laws of electromagnetic induction and conversion.The longitudinal wave term of Faraday’s law is reinstated to render it suitable for theoretical derivation of the LEM(Longitudinal Electromagnetic Wave)equation.Subsequently,we formulate the wave and energy equations for electric P-wave based on reevaluated total current law and modified Faraday’s law;meanwhile proposing a propagation mode that reveals its mechanisms absorbing free energy for LEM waves in a conductor predicated on interaction between scalar electric field and vortex magnetic field.Furthermore,through theoretical derivations based on LEM waves,insights into concealed relationships between electric P-wave and electromagnetism scalar potential are disclosed alongside the constraint equation between the wave velocities of LEM wave and TEM(Transverse Electromagnetic)waves,unveiling the significance of LEM wave.
基金This work was funded by the National Natural Science Foundation of China(12102487)Guangdong Basic and Applied Basic Research Foundation(2019A1515111056)Discovery Grant(RGPIN-2018-05991)of the Natural Sciences and Engineering Research Council of Canada.
文摘A floating partial space elevator(PSE)is a PSE with a floating main satellite.This work aims to keep the orbital radius of the main satellite of a floating PSE in cargo transposition without the use of thrusts.A six-degree-of-freedom two-piece dumbbell model was built to analyze the dynamics of a floating PSE.By adjusting the climber’s moving speed and rolling of the end body,the main satellite’s orbital radius can be kept.A novel control strategy using a proportional shrinking horizon model predictive control law containing a self-stability modified law is proposed to stabilize both the orbital and libration states to regulate the speed of only the climber.Simulation results validated the proposed control strategy.The system provides a successful approach to the desired equilibrium by the end of the transposition.
基金Supported by the National Natural Science Foundation of China under Grant No.11405016Basic Research Project of Science and Technology Committee of Chongqing under Grant No.cstc2016jcyja0364
文摘We derive the Misner-Sharp-like masses Dilaton-Axion black hole by using the modified first of the Reissner-Nordstr6m black hole and the Einstein-Maxwell- law of thermodynamics. Their surface tensions are investigated. For the Reissner-NordstrSm black hole, the outer horizon radius is treated as a variable and the effective temperature is introduced. For the Einstein-Maxwe11-Dilaton-Axion black hole, the outer horizon radius, the angular momentum unit mass and the parameter b are seen as three independent variables, and the mass, the horizon area and the angular momentum are functions of them.
基金Supported in part by the National Science Foundation of China(NSFC)under Grant Nos.11690022 and 11475237Strategic Priority Research Program of the Chinese Academy of Sciences(CAS), under Grant No.XDB23030100+1 种基金Key Research Program QYZDYSSWSYS007the CAS Center for Excellence in Particle Physics(CCEPP)
文摘In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.