A nonclassical law of iterated logarithm that holds for a stationary negatively associated sequence of random variables with finite variance is proved in this paper. The proof is based on a Rosenthal type maximal ineq...A nonclassical law of iterated logarithm that holds for a stationary negatively associated sequence of random variables with finite variance is proved in this paper. The proof is based on a Rosenthal type maximal inequality and the subsequence method.This result extends the work of Klesov,Rosalsky (2001) and Shao,Su (1999).展开更多
In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1...Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.展开更多
Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞...Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function.展开更多
Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-...Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.展开更多
Hu Shuhe gets a sufficient condition on the law of the iterated logarithm for the sums of φ-mixing sequences with duple suffixes. This paper greatly improves his condition.
Using the forward-backward martingale decomposition and the martingale limit theorems, we establish the functional law of iterated logarithm for an additive functional (At) of a reversible Markov process, under the mi...Using the forward-backward martingale decomposition and the martingale limit theorems, we establish the functional law of iterated logarithm for an additive functional (At) of a reversible Markov process, under the minimal condition that σ~2(A)= tim BA_t~2/t exists in R. We extend also t →∞ the previous remarkable functional central limit theorem of Kipnis and Varadhan.展开更多
In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑...In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.展开更多
Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing d...Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing dependence, local properties including strong consistency and law of iterated logarithm are presented. Moreover, when the mode estimator is defined as the random variable that maximizes the kernel density estimator, the asymptotic normality of the mode estimator is established.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A s...Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A strong approximation of ζ(n) by the local time for Wiener process is presented and the limsup type and liminf-type laws of iterated logarithm of the maximum local time ζ*(n) are obtained. Furthermore,the precise asymptoties in the law of iterated logarithm of ζ*(n) is proved.展开更多
We consider laws of iterated random walks in random environments. logarithm for one-dimensional transient A quenched law of iterated logarithm is presented for transient random walks in general ergodic random environm...We consider laws of iterated random walks in random environments. logarithm for one-dimensional transient A quenched law of iterated logarithm is presented for transient random walks in general ergodic random environments, including independent identically distributed environments and uniformly ergodic environments.展开更多
In this paper,we investigate the problem:How big are the increments of G-Brownian motion.We obtain the Csrg and R′ev′esz’s type theorem for the increments of G-Brownian motion.As applications of this result,we get ...In this paper,we investigate the problem:How big are the increments of G-Brownian motion.We obtain the Csrg and R′ev′esz’s type theorem for the increments of G-Brownian motion.As applications of this result,we get the law of iterated logarithm and the Erds and R′enyi law of large numbers for G-Brownian motion.Furthermore,it turns out that our theorems are natural extensions of the classical results obtained by Csrg and R′ev′esz(1979).展开更多
Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisf...Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter-ation algorithm is also considered, which converges to the unique solution of the likelihoodequation. Moreover, we extend these results to a random case.展开更多
<正> Based on program-size complexity, a logical basis for information theory and probabilitytheory has been proposed by A. N. Kolmogorov. The aim of this paper is to furtherstrengthen this logical basis and mak...<正> Based on program-size complexity, a logical basis for information theory and probabilitytheory has been proposed by A. N. Kolmogorov. The aim of this paper is to furtherstrengthen this logical basis and make it more perfect. First, for the general case of com-putable probability distributions. sufficient and necessary conditions are given for an infinitesequence x∈A~∞ to be a Martin-lof (M. L.) infinite random sequence of a computable proba-bility distribution. These sufficient and necessary conditions give a complexity-baseddefinition of an infinite random sequence which is equivalent to P. Martin-lof’s statisticaldefinition of the concept of randomness. Consequently, a common complexity-based theoryof finite and infinite random sequences is established. Finally, inequalities between Chaitincomplexity and Shannon information content of a single event are given, and asymptoticallyequivalent relationships between them are also presented.展开更多
Let {X, X_; ∈N^d} be a field of i.i.d, random variables indexed by d-tuples of positive integers and taking values in a Banach space B and let X_^((r))=X_(m) if ‖X_‖ is the r-th maximum of {‖X_‖; ≤. Let S_=∑(≤...Let {X, X_; ∈N^d} be a field of i.i.d, random variables indexed by d-tuples of positive integers and taking values in a Banach space B and let X_^((r))=X_(m) if ‖X_‖ is the r-th maximum of {‖X_‖; ≤. Let S_=∑(≤)X_ and ^((r))S_=S_-(X_^((1))+…+X_^((r)). We approximate the trimmed sums ^((r))_n, by a Brownian sheet and obtain sufficient and necessary conditions for ^((r))S_ to satisfy the compact and functional laws of the iterated logarithm. These results improve the previous works by Morrow (1981), Li and Wu (1989) and Ledoux and Talagrand (1990).展开更多
For a linear model, let the error sequence be i.i.d, with common unknown density f(x), and (x) be a nonparametric estimator of f(x) based on the residuals. In this paper, on the basis of [1], we establish the L_1-norm...For a linear model, let the error sequence be i.i.d, with common unknown density f(x), and (x) be a nonparametric estimator of f(x) based on the residuals. In this paper, on the basis of [1], we establish the L_1-norm consistency, asymptotic normality and law of iterated logarithm for (x) under general condition. These results bring the asymptotic theory for estimation of error distributions to completion.展开更多
The generalized Friedman’s urn model is a popular urn model which is widely used in many disciplines.In particular,it is extensively used in treatment allocation schemes in clinical trials.In this paper,we show that ...The generalized Friedman’s urn model is a popular urn model which is widely used in many disciplines.In particular,it is extensively used in treatment allocation schemes in clinical trials.In this paper,we show that both the urn composition process and the allocation proportion process can be approximated by a multi-dimensional Gaussian process almost surely for a multi-color generalized Friedman’s urn model with both homogeneous and non-homogeneous generating matrices.The Gaussian process is a solution of a stochastic differential equation.This Gaussian approximation is important for the understanding of the behavior of the urn process and is also useful for statistical inferences.As an application,we obtain the asymptotic properties including the asymptotic normality and the law of the iterated logarithm for a multi-color generalized Friedman's urn model as well as the randomized-play-the-winner rule as a special case.展开更多
文摘A nonclassical law of iterated logarithm that holds for a stationary negatively associated sequence of random variables with finite variance is proved in this paper. The proof is based on a Rosenthal type maximal inequality and the subsequence method.This result extends the work of Klesov,Rosalsky (2001) and Shao,Su (1999).
基金Project Supported by NSFC (10131040)SRFDP (2002335090)
文摘A law of iterated logarithm for R/S statistics with the help of the strong approximations of R/S statistics by functions of a Wiener process is shown.
文摘In this article, a law of iterated logarithm for the maximum likelihood estimator in a random censoring model with incomplete information under certain regular conditions is obtained.
基金Research supported by National Nature Science Foundation of China:10471126
文摘Let{X,Xn;n≥1} be a sequence of i,i.d, random variables, E X = 0, E X^2 = σ^2 〈 ∞.Set Sn=X1+X2+…+Xn,Mn=max k≤n│Sk│,n≥1.Let an=O(1/loglogn).In this paper,we prove that,for b〉-1,lim ε→0 →^2(b+1)∑n=1^∞ (loglogn)^b/nlogn n^1/2 E{Mn-σ(ε+an)√2nloglogn}+σ2^-b/(b+1)(2b+3)E│N│^2b+3∑k=0^∞ (-1)k/(2k+1)^2b+3 holds if and only if EX=0 and EX^2=σ^2〈∞.
基金Research supported by the National Natural Science Foundation of China (1 0 0 71 0 72 )
文摘Let {X,X n;n≥1} be a strictly stationary sequence of ρ-mixing random variables with mean zero and finite variance. Set S n=n k=1X k,M n=max k≤n|S k|,n≥1. Suppose lim n→∞ES2 n/n=∶σ2>0 and ∞n=1ρ 2/d(2n)<∞, where d=2,if -1<b<0 and d>2(b+1),if b≥0. It is proved that,for any b>-1, limε0ε 2(b+1)∞n=1(loglogn)bnlognP{M n≥εσ2nloglogn}= 2(b+1)πГ(b+3/2)∞k=0(-1)k(2k+1) 2b+2,where Г(·) is a Gamma function.
基金supported by NSFC(10071072) supported by SRFDP(200235090)+1 种基金support by the BK21 Project of the Department of Mathematics,Yonsei Universitythe Interdisciplinary Research Program of KOSEF 1999-2-103-001-5 and com2MaC in POSTECH
文摘Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.
文摘Hu Shuhe gets a sufficient condition on the law of the iterated logarithm for the sums of φ-mixing sequences with duple suffixes. This paper greatly improves his condition.
基金the National Natural Sciences Foundation of China the Foundation of Y.D. Fok.
文摘Using the forward-backward martingale decomposition and the martingale limit theorems, we establish the functional law of iterated logarithm for an additive functional (At) of a reversible Markov process, under the minimal condition that σ~2(A)= tim BA_t~2/t exists in R. We extend also t →∞ the previous remarkable functional central limit theorem of Kipnis and Varadhan.
文摘In the case of Z+^d(d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k∈ Z+^d} i.i.d, random variables with mean 0, Sn =∑k≤nXk and Vn^2 = ∑j≤nXj^2, the precise asymptotics for ∑n1/|n|(log|n|dP(|Sn/Vn|≥ε√log log|n|) and ∑n(logn|)b/|n|(log|n|)^d-1P(|Sn/Vn|≥ε√log n),as ε↓0,is established.
文摘Based on left truncated and right censored dependent data, the estimators of higher derivatives of density function and hazard rate function are given by kernel smoothing method. When observed data exhibit α-mixing dependence, local properties including strong consistency and law of iterated logarithm are presented. Moreover, when the mode estimator is defined as the random variable that maximizes the kernel density estimator, the asymptotic normality of the mode estimator is established.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
文摘Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A strong approximation of ζ(n) by the local time for Wiener process is presented and the limsup type and liminf-type laws of iterated logarithm of the maximum local time ζ*(n) are obtained. Furthermore,the precise asymptoties in the law of iterated logarithm of ζ*(n) is proved.
基金The author would like to thank the referees for comments on conditions (C1) and (C2). This work was supported in part by the National Natural Science Foundation of China (Grant No. 11171262) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130141110076).
文摘We consider laws of iterated random walks in random environments. logarithm for one-dimensional transient A quenched law of iterated logarithm is presented for transient random walks in general ergodic random environments, including independent identically distributed environments and uniformly ergodic environments.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301295 and 11171179)supported by National Natural Science Foundation of China (Grant Nos. 11231005 and 11171062)+6 种基金supported by National Natural Science Foundation of China (Grant No. 11301160)Natural Science Foundation of Yunnan Province of China (Grant No. 2013FZ116)Doctoral Program Foundation of Ministry of Education of China (Grant Nos. 20123705120005 and 20133705110002)Postdoctoral Science Foundation of China (Grant No. 2012M521301)Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2012AQ009 and ZR2013AQ021)Program for Scientific Research Innovation Team in Colleges and Universities of Shandong ProvinceWCU (World Class University) Program of Korea Science and Engineering Foundation (Grant No. R31-20007)
文摘In this paper,we investigate the problem:How big are the increments of G-Brownian motion.We obtain the Csrg and R′ev′esz’s type theorem for the increments of G-Brownian motion.As applications of this result,we get the law of iterated logarithm and the Erds and R′enyi law of large numbers for G-Brownian motion.Furthermore,it turns out that our theorems are natural extensions of the classical results obtained by Csrg and R′ev′esz(1979).
基金the National Natural Science Foundation of China
文摘Abstract. A grouped data model for Weibull distribution is considered. Under mild con-ditions, the maximum likelihood estimators(MLE) are shown to be identifiable, stronglyconsistent, asymptotically normal, and satisfy the law of iterated logarithm. Newton iter-ation algorithm is also considered, which converges to the unique solution of the likelihoodequation. Moreover, we extend these results to a random case.
文摘<正> Based on program-size complexity, a logical basis for information theory and probabilitytheory has been proposed by A. N. Kolmogorov. The aim of this paper is to furtherstrengthen this logical basis and make it more perfect. First, for the general case of com-putable probability distributions. sufficient and necessary conditions are given for an infinitesequence x∈A~∞ to be a Martin-lof (M. L.) infinite random sequence of a computable proba-bility distribution. These sufficient and necessary conditions give a complexity-baseddefinition of an infinite random sequence which is equivalent to P. Martin-lof’s statisticaldefinition of the concept of randomness. Consequently, a common complexity-based theoryof finite and infinite random sequences is established. Finally, inequalities between Chaitincomplexity and Shannon information content of a single event are given, and asymptoticallyequivalent relationships between them are also presented.
基金Supported by National Natural Science Foundation of China (No. 10071072)
文摘Let {X, X_; ∈N^d} be a field of i.i.d, random variables indexed by d-tuples of positive integers and taking values in a Banach space B and let X_^((r))=X_(m) if ‖X_‖ is the r-th maximum of {‖X_‖; ≤. Let S_=∑(≤)X_ and ^((r))S_=S_-(X_^((1))+…+X_^((r)). We approximate the trimmed sums ^((r))_n, by a Brownian sheet and obtain sufficient and necessary conditions for ^((r))S_ to satisfy the compact and functional laws of the iterated logarithm. These results improve the previous works by Morrow (1981), Li and Wu (1989) and Ledoux and Talagrand (1990).
基金Project supported by the National Natural Science Foundation of China.
文摘For a linear model, let the error sequence be i.i.d, with common unknown density f(x), and (x) be a nonparametric estimator of f(x) based on the residuals. In this paper, on the basis of [1], we establish the L_1-norm consistency, asymptotic normality and law of iterated logarithm for (x) under general condition. These results bring the asymptotic theory for estimation of error distributions to completion.
基金supported by National Natural Science Foundation of China (Grant No. 10771192)National Science Foundation of USA (Grant No. DMS-0349048)
文摘The generalized Friedman’s urn model is a popular urn model which is widely used in many disciplines.In particular,it is extensively used in treatment allocation schemes in clinical trials.In this paper,we show that both the urn composition process and the allocation proportion process can be approximated by a multi-dimensional Gaussian process almost surely for a multi-color generalized Friedman’s urn model with both homogeneous and non-homogeneous generating matrices.The Gaussian process is a solution of a stochastic differential equation.This Gaussian approximation is important for the understanding of the behavior of the urn process and is also useful for statistical inferences.As an application,we obtain the asymptotic properties including the asymptotic normality and the law of the iterated logarithm for a multi-color generalized Friedman's urn model as well as the randomized-play-the-winner rule as a special case.