In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, ...In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, the (2+1)-dimensional Lax pair is reduced to (1+1)-dimensional Lax pair, whose compatibility yields the reduction of the ANNV equation. Based on the obtained reductions of the ANNV equation, a lot of new exact solutions for the ANNV equation are found. This shows that for an integrable system, both the symmetry and the reductions can be obtained through its corresponding Lax pair.展开更多
In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering ...In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out.展开更多
In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are ...In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are also proposed/or this model.展开更多
Starting from a weak Lax pair, the general Lie point symmetry group of the Konopelchenko-Dubrovsky equation is obtained by using the general direct method. And the corresponding Lie algebra structure is proved to be a...Starting from a weak Lax pair, the general Lie point symmetry group of the Konopelchenko-Dubrovsky equation is obtained by using the general direct method. And the corresponding Lie algebra structure is proved to be a Kac-Mood-Virasoro type. Furthermore, a new multi-soliton solution for the Konopelchenko-Dubrovsky equation is also given from this symmetry group and a known solution.展开更多
Using the colored Yang–Baxter equation, the Lax pairs for the system with color parameters and periodic boundary conditions are derived. The explicit expressions of the Lax pairs for the six-vertex standard matrices...Using the colored Yang–Baxter equation, the Lax pairs for the system with color parameters and periodic boundary conditions are derived. The explicit expressions of the Lax pairs for the six-vertex standard matrices of both the Baxter and free-Fermion types are given.展开更多
In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formula...In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formulas of the first part of the Lax pairs. Then by further discussion and doing some revisional work, we make the recursion formulas fit for the second part of Lax pairs. At last, some solutions to the MGDLW equation are worked out by using the recursion formula.展开更多
Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented...Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented. We obtain several interesting reductions. Comparing the reduced Lax pair's compatibility with the reduced SK equation under the same symmetry group, we find that the reduced Lax pairs do not always lead to the reduced SK equation. In general, the reduced equations are the subsets of the compatibility conditions of the reduced Lax pair.展开更多
Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding...Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding results and the Backlund transformations can be obtained on three conditioners which include Caudrey-Dodd-Cibbon- Sawada-Kotera equation, the Lax equation and the Kaup-kupershmidt equation.展开更多
Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-...Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.展开更多
We derive the Lax pairs and integrability conditions of the nonlinear Schrdinger equation with higher-order terms, complex potentials, and time-dependent coefficients. Cubic and quintic nonlinearities together with de...We derive the Lax pairs and integrability conditions of the nonlinear Schrdinger equation with higher-order terms, complex potentials, and time-dependent coefficients. Cubic and quintic nonlinearities together with derivative terms are considered. The Lax pairs and integrability conditions for some of the well-known nonlinear Schrdinger equations, including a new equation which was not considered previously in the literature, are then derived as special cases. We show most clearly with a similarity transformation that the higher-order terms restrict the integrability to linear potential in contrast with quadratic potential for the standard nonlinear Schrdinger equation.展开更多
Starting from the similarity reductions of the Kadomtsev-Petviashvili equation, we getthe generalized Boussinesq equation and the generalized KdV equation which possess somearbitrary functions as their variable coeffi...Starting from the similarity reductions of the Kadomtsev-Petviashvili equation, we getthe generalized Boussinesq equation and the generalized KdV equation which possess somearbitrary functions as their variable coefficients. Using the singularity analysis methoddeveloped by J. Weiss and M. D. Kruskal et al. we have proved the sufficient conditionsof the integrabilities and Painleve properties of these two equations. Their Backlund trans-formations and the singularity manifold equations (generalized Schwartz-Boussinesq equationand Schwartz-KdV equation) are obtained. And then these two equations are linearized, i. e.their Lax pairs are given with the time-independent arbitrary spectral parameters includedexplicitly.展开更多
We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the...We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.展开更多
The general Lie point symmetry groups of the Nizhnik-Novikov-Vesselov (NNV) equation and the asymmetric NNV equation are given by a simple direct method with help of their weak Lax pairs.
基金Natural Science Foundation of Shandong Province under Grant Nos.2004zx16 and Q2005A01
文摘In this paper, the direct symmetry method is extended to the Lax pair of the ANNV equation. As a result, symmetries of the Lax pair and the ANNV equation are obtained at the same time. Applying the obtained symmetry, the (2+1)-dimensional Lax pair is reduced to (1+1)-dimensional Lax pair, whose compatibility yields the reduction of the ANNV equation. Based on the obtained reductions of the ANNV equation, a lot of new exact solutions for the ANNV equation are found. This shows that for an integrable system, both the symmetry and the reductions can be obtained through its corresponding Lax pair.
基金The project supported by the Key Project of the Chinese Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024+2 种基金Chinese Ministry of Education,the National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronautics,and by the National Basic Research Program of China(973 Program)under Grant No.2005CB321901
文摘In this paper, we put our focus on a variable-coe^cient fifth-order Korteweg-de Vries (fKdV) equation, which possesses a great number of excellent properties and is of current importance in physical and engineering fields. Certain constraints are worked out, which make sure the integrability of such an equation. Under those constraints, some integrable properties are derived, such as the Lax pair and Darboux transformation. Via the Darboux transformation, which is an exercisable way to generate solutions in a recursive manner, the one- and two-solitonic solutions are presented and the relevant physical applications of these solitonic structures in some fields are also pointed out.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203001, the Fund of the State Key Laboratory of Scientific and Engineering Computing, the Chinese Academy of Sciences, and Hong Kong Research Grant Council under Grant No. HKBU/2016/03P
文摘In this paper, we obtain a 1+1 dimensional integrable differential-difference model for the sine-Gordon equation by Hirota's discretization method. A bilinear Backlund transformation and the associated Lax pair are also proposed/or this model.
基金supported by the National Natural Science Foundation of China (Grant No.10875078)the Natural Science Foundation of Zhejiang Province,China (Grant No.Y7080455)
文摘Starting from a weak Lax pair, the general Lie point symmetry group of the Konopelchenko-Dubrovsky equation is obtained by using the general direct method. And the corresponding Lie algebra structure is proved to be a Kac-Mood-Virasoro type. Furthermore, a new multi-soliton solution for the Konopelchenko-Dubrovsky equation is also given from this symmetry group and a known solution.
文摘Using the colored Yang–Baxter equation, the Lax pairs for the system with color parameters and periodic boundary conditions are derived. The explicit expressions of the Lax pairs for the six-vertex standard matrices of both the Baxter and free-Fermion types are given.
基金The project supported by National Natural Science Foundation of China under Grant No.10101025
文摘In this article, we study the Lax pairs of -dimensional equation: the modified generalized dispersive long wave (MGDLW) equation. Based on the well-known binary Darboux transformation, we dig out the recursion formulas of the first part of the Lax pairs. Then by further discussion and doing some revisional work, we make the recursion formulas fit for the second part of Lax pairs. At last, some solutions to the MGDLW equation are worked out by using the recursion formula.
文摘Based on the symbolic computational system Maple, the similarity reductions of a Lax pair for the (2+1 )-dimensional differential Sawada Kotera (SK) equation by the classical Lie point group method, are presented. We obtain several interesting reductions. Comparing the reduced Lax pair's compatibility with the reduced SK equation under the same symmetry group, we find that the reduced Lax pairs do not always lead to the reduced SK equation. In general, the reduced equations are the subsets of the compatibility conditions of the reduced Lax pair.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10735030,11075055,and 90718041the Shanghai Leading Academic Discipline Project,China under Grant No.B412+1 种基金the Program for Changjiang Scholars,the Innovative Research Team in University of Ministry of Education of China under Grant No.IRT 0734the K.C.Wong Magna Fund in Ningbo University
文摘Based on the method developed by Nucci, the pseudopotentials, Lax pairs and the mngulanty mamtoia equations of the generalized fifth-order KdV equation are derived. By choosing different coefficient, the corresponding results and the Backlund transformations can be obtained on three conditioners which include Caudrey-Dodd-Cibbon- Sawada-Kotera equation, the Lax equation and the Kaup-kupershmidt equation.
基金Project supported by the BUPT Excellent Ph.D.Students Foundation(Grant No.CX2019201)the National Natural Science Foundation of China(Grant Nos.11772017 and 11805020)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(Grant No.IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China(Grant No.2011BUPTYB02)。
文摘Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.
基金the support provided by United Arab Emirates University under the NRF grantthe support provided by King Fahd University of Petroleum and Minerals under group project nos.RG1107-1,RG1107-2,RG1214-1,and RG1214-2
文摘We derive the Lax pairs and integrability conditions of the nonlinear Schrdinger equation with higher-order terms, complex potentials, and time-dependent coefficients. Cubic and quintic nonlinearities together with derivative terms are considered. The Lax pairs and integrability conditions for some of the well-known nonlinear Schrdinger equations, including a new equation which was not considered previously in the literature, are then derived as special cases. We show most clearly with a similarity transformation that the higher-order terms restrict the integrability to linear potential in contrast with quadratic potential for the standard nonlinear Schrdinger equation.
基金Project supported by the National Natural Science Foundation of China.
文摘Starting from the similarity reductions of the Kadomtsev-Petviashvili equation, we getthe generalized Boussinesq equation and the generalized KdV equation which possess somearbitrary functions as their variable coefficients. Using the singularity analysis methoddeveloped by J. Weiss and M. D. Kruskal et al. we have proved the sufficient conditionsof the integrabilities and Painleve properties of these two equations. Their Backlund trans-formations and the singularity manifold equations (generalized Schwartz-Boussinesq equationand Schwartz-KdV equation) are obtained. And then these two equations are linearized, i. e.their Lax pairs are given with the time-independent arbitrary spectral parameters includedexplicitly.
文摘We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.
文摘The general Lie point symmetry groups of the Nizhnik-Novikov-Vesselov (NNV) equation and the asymmetric NNV equation are given by a simple direct method with help of their weak Lax pairs.