期刊文献+
共找到1,143篇文章
< 1 2 58 >
每页显示 20 50 100
Fabrication of seeded substrates for layer transferrable silicon films
1
作者 Ji-Zhou Li Wei Zhang +1 位作者 Jing-Yuan Yan Cong Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期450-454,共5页
The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous... The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology. 展开更多
关键词 seeded substrate layer transfer joint mask FILLER silicon film
下载PDF
A Simplified Scheme of the Generalized Layered Radiative Transfer Model 被引量:2
2
作者 戴秋丹 孙菽芬 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第2期213-226,共14页
In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted ... In this paper, firstly, a simplified version (SGRTM) of the generalized layered radiative transfer model (GRTM) within the canopy, developed by us, is presented. It reduces the information requirement of inputted sky diffuse radiation, as well as of canopy morphology, and in turn saves computer resources. Results from the SGRTM agree perfectly with those of the GRTM. Secondly, by applying the linear superposition principle of the optics and by using the basic solutions of the GRTM for radiative transfer within the canopy under the condition of assumed zero soil reflectance, two sets of explicit analytical solutions of radiative transfer within the canopy with any soil reflectance magnitude are derived: one for incident diffuse, and the other for direct beam radiation. The explicit analytical solutions need two sets of basic solutions of canopy reflectance and transmittance under zero soil reflectance, run by the model for both diffuse and direct beam radiation. One set of basic solutions is the canopy reflectance αf (written as α1 for direct beam radiation) and transmittance βf (written as β1 for direction beam radiation) with zero soil reflectance for the downward radiation from above the canopy (i.e. sky), and the other set is the canopy reflectance (αb) and transmittance βb for the upward radiation from below the canopy (i.e., ground). Under the condition of the same plant architecture in the vertical layers, and the same leaf adaxial and abaxial optical properties in the canopies for the uniform diffuse radiation, the explicit solutions need only one set of basic solutions, because under this condition the two basic solutions are equal, i.e., αf = αb and βf = βb. Using the explicit analytical solutions, the fractions of any kind of incident solar radiation reflected from (defined as surface albedo, or canopy reflectance), transmitted through (defined as canopy transmittance), and absorbed by (defined as canopy absorptance) the canopy and other properties pertinent to the radiative transfer within the canopy can be estimated easily on the ground surface below the canopy (soil or snow surface) with any reflectance magnitudes. The simplified transfer model is proven to have a similar accuracy compared to the detailed model, as well as very efficient computing. 展开更多
关键词 generalized layered canopy radiative transfer model simplified model analytical solutions basic solutions adaxial abaxial leaf optical properties
下载PDF
Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid 被引量:6
3
作者 Aurang Zaib Krishnendu Bhattacharyya Sharidan Shafie 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4856-4863,共8页
An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-un... An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent. 展开更多
关键词 unsteady boundary layer heat transfer NANOFLUID exponentially shrinking sheet dual non-similar solutions
下载PDF
Experimental study on convection heat transfer and air drag in sinter layer 被引量:2
4
作者 潘利生 魏小林 +2 位作者 彭岩 时小宝 刘怀亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2841-2848,共8页
Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimenta... Convection heat transfer coefficient and air pressure drop in sinter layer are important factors for the design of sinter cooling craft. Due to the lack of necessary data, the two parameters are studied by experimental method. The experimental results show that heat conduction of sinter impacts the measurement of convection heat transfer coefficient. Convection heat transfer increases with the increase of air volumetric flow rate. Sinter layer without small particles(sample I) gives higher convection heat transfer coefficient than that with small particles(sample II). Under the considered conditions, volumetric convection heat transfer coefficient is in the range of 400-1800 W/(m3·°C). Air pressure drop in sinter layer increases with the increase of normal superficial velocity, as well as with the rise of air temperature. Additionally, air pressure drop also depends on sinter particle size distribution. In considered experimental conditions, pressure drop in sinter sample II is 2-3 times that in sinter sample I, which resulted from 17% small scale particles in sinter sample II. 展开更多
关键词 sinter layer convection heat transfer pressure drop
下载PDF
Effect of SDBS on interfacial electron transfer at the liquid/liquid interface by thin layer method 被引量:1
5
作者 Xiu Hui Liu Cun Wu Dong Kai Zhang Fu Peng Zhi Zhen Ding Xiao Quan Lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第9期1115-1118,共4页
The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacen... The effect of an adsorbed anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on electron transfer (ET) reaction between ferricyanide aqueous solution and decamethylferrocene (DMFc) located on the adjacent organic phase was investigated for the first time by thin layer method. The adsorption of SDBS at the interface resulted in a decay in the cathodic plateau current of bimolecular reaction with increasing concentrations of SDBS in aqueous phase. However, the rate constant of electron transfer (ket) increased monotonically as the SDBS concentrations increased from 0 to 200 p, moFL. The experimental results showed that SDBS formed patches on the interface and influenced the structure of electrical double layer. 2009 Xiao Quan Lu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. 展开更多
关键词 Anionic surfactant Liquid/liquid interface Electron transfer Thin layer method
下载PDF
Analytical solutions to a compressible boundary layer problem with heat transfer 被引量:1
6
作者 LiancunZheng XinxinZhang JichengHe 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期120-122,共3页
The problem of momentum and heat transfer in a compressible boundary layerbehind a thin expansion wave was solved by the application of the similarity transformation and theshooting technique. Utilizing the analytical... The problem of momentum and heat transfer in a compressible boundary layerbehind a thin expansion wave was solved by the application of the similarity transformation and theshooting technique. Utilizing the analytical expression of a two-point boundary value problem formomentum transfer, the energy boundary layer solution was represented as a function of thedimensionless velocity, and as the parameters of the Prandtl number, the velocity ratio, and thetemperature ratio. 展开更多
关键词 compressible boundary layer momentum and heat transfer analytical solution
下载PDF
Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer
7
作者 郭园园 赵飞飞 +1 位作者 薛海斌 刘喆颉 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第3期107-110,共4页
The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly mag- netized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau-Li... The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly mag- netized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau-Lifshitz- Cilbert-Slonczewski equation. It is demonstrated numerically that the second-order uniaxial anisotropy plays a significant role in the occurrence of a zero-magnetic-field steady-state precession, which can be understood in terms of the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to the Gilbert damping. In particular, a relatively large zero-magnetic-field-oscillation current region, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by modulating the second-order uniaxial anisotropy of the free layer. These results suggest a tunable zero-magnetic-field STNO, and it may be a promising configuration for STNO's applications in future wireless communications. 展开更多
关键词 of on in is it as Zero-Magnetic-Field Oscillation of Spin transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free layer with
下载PDF
Boundary Layer Stagnation-Point Slip Flow and Heat Transfer towards a Shrinking/Stretching Cylinder over a Permeable Surface
8
作者 Nor Azian Aini Mat Norihan Md. Arifin +1 位作者 Roslinda Nazar Norfifah Bachok 《Applied Mathematics》 2015年第3期466-475,共10页
In this paper, the boundary layer stagnation-point slip flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface is considered. The governing equations are first transformed into a syste... In this paper, the boundary layer stagnation-point slip flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface is considered. The governing equations are first transformed into a system of non-dimensional equations via the non-dimensional variables, and then into self-similar ordinary differential equations before they are solved numerically using the shooting method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the velocity slip parameter (α), the thermal slip parameter (β), the curvature parameter (γ) and the velocity ratio parameter (c/a). The physical quantities of interest are the skin friction coefficient and the local Nusselt number measured by f’’(0) and –θ’(0), respectively. The numerical results show that the velocity slip parameter α increases the heat transfer rate at the surface, while the thermal slip parameter β decreases it. On the other hand, increasing the velocity slip parameter α causes the decrease in the flow velocity. Further, it is found that the solutions for a shrinking cylinder (c/ac/a>0) case. Finally, it is also found that the values of f’’(0) and –θ’(0) increase as the curvature parameter γ increases. 展开更多
关键词 Boundary layer Heat transfer Numerical Solution Shrinking/Stretching CYLINDER SLIP Flow Stagnation-Point Suction/Injection
下载PDF
Influence of Chemical Reaction and Thermal Radiation on MHD Boundary Layer Flow and Heat Transfer of a Nanofluid over an Exponentially Stretching Sheet 被引量:1
9
作者 N. G. Rudraswamy B. J. Gireesha 《Journal of Applied Mathematics and Physics》 2014年第2期24-32,共9页
In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretch... In the present article a numerical analysis has been carried out to study the boundary layer flow behavior and heat transfer characteristics of a nanofluid over an exponential stretching sheet. By assuming the stretching sheet to be impermeable, the effect of chemical reaction, thermal radiation, thermopherosis, Brownian motion and suction parameters in the presence of uniform magnetic field on heat and mass transfer are addressed. The governing system of equations is transformed into coupled nonlinear ordinary differential equations using suitable similarity transformations. The transformed equations are then solved numerically using the well known Runge-Kutta-Fehlberg method of fourth-fifth order. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and the results are presented in both graphical and tabular forms. 展开更多
关键词 NANOFLUID EXPONENTIALLY STRETCHING Sheet Chemical Reaction Thermal Radiation Boundary layer Flow Heat and Mass transfer
下载PDF
Heat transfer for boundary layers with cross flow
10
作者 Krishnendu Bhattacharyya Ioan Pop 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期327-332,共6页
An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equat... An analysis is presented to study the dual nature of solutions for the forced convective boundary layer flow and heat transfer in a cross flow with viscous dissipation terms in the energy equation. The governing equations are transformed into a set of three self-similar ordinary differential equations by similarity transformations. These equations are solved numerically using the very efficient shooting method. This study reveals that the dual solutions of the transformed similarity equations for velocity and temperature distributions exist for certain values of the moving parameter, Prandtl number, and Eckert numbers. The reverse heat flux is observed for larger Eckert numbers; that is, heat absorption at the wall occurs. 展开更多
关键词 heat transfer boundary layer cross flow viscous dissipation dual solutions
下载PDF
Effects of Solid Matrix and Porosity of Porous Medium on Heat Transfer of Marangoni Boundary Layer Flow Saturated with Power-Law Nanofluids
11
作者 陈晖 肖天丽 +1 位作者 陈嘉阳 沈明 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期80-84,共5页
The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of soli... The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth-fifth-order Runge-Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow. 展开更多
关键词 of is as Effects of Solid Matrix and Porosity of Porous Medium on Heat transfer of Marangoni Boundary layer Flow Saturated with Power-Law Nanofluids in with on
下载PDF
Boundary Layer Flow of an Unsteady Dusty Fluid and Heat Transfer Over a Stretching Sheet with Non-Uniform Heat Source/Sink 被引量:1
12
作者 Bijjanal J. Gireesha Govinakovi S. Roopa Channabasappa S. Bagewadi 《Engineering(科研)》 2011年第7期726-735,共10页
An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. ... An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. Heat transfer characteristics are examined for two different kinds of boundary conditions, namely 1) variable wall temperature and 2) variable heat flux. The governing partial differential equations are transformed to system of ordinary differential equations. These equations are solved numerically by applying RKF-45 method. The effects of various physical parameters such as magnetic parameter, dust interaction parameter, number density, Prandtl number, Eckert number, heat source/sink parameter and unsteadiness parameter on velocity and temperature profiles are studied. 展开更多
关键词 UNSTEADY Flow HEAT transfer Boundary layer Flow Stretching Surface DUSTY FLUID Fluid-Particle Interaction Parameter and NON-UNIFORM HEAT Source/Sink
下载PDF
Effects of Hall Current on MHD Boundary Layer Second-Order Viscoelastic Fluid Flow Induced by a Continuous Surface with Heat Transfer
13
作者 Haider Zaman Murad Ali Shah +1 位作者 Farhan Khan Qaiser Javed 《American Journal of Computational Mathematics》 2014年第3期143-152,共10页
Effects of Hall current on heat transfer and magnetohydrodynamic (MHD) boundary layer flow induced by a continuous surface in a parallel free stream of a second-order viscoelastic fluid are studied for uniform suction... Effects of Hall current on heat transfer and magnetohydrodynamic (MHD) boundary layer flow induced by a continuous surface in a parallel free stream of a second-order viscoelastic fluid are studied for uniform suction/injection by taking viscous dissipation into account. Complex nonsimilar solutions to the stream function and temperature are developed by means of an elegant technique, known as homotopy analysis method (HAM). Convergence of the solutions is ensured with the help of -curves. Graphical and tabular results for the effects of Hall current reveal that it has a significant influence on: complex velocity, complex temperature, magnitude of the shear stress at the surface, magnitude of the rate of heat transfer at the surface and on boundary layer thickness. 展开更多
关键词 HALL CURRENTS Heat transfer Boundary layer Complex Nonsimilar Solutions HAM
下载PDF
Unsteady Boundary Layer Flow and Heat Transfer Due to a Stretching Sheet by Quasilinearization Technique
14
作者 Wubshet Ibrahim Bandari Shanker 《World Journal of Mechanics》 2011年第6期288-293,共6页
In this paper, the problem of unsteady laminar boundary-layer flow and heat transfer of a viscous income-pressible fluid over stretching sheet is studied numerically. The unsteadiness in the flow and temperature is ca... In this paper, the problem of unsteady laminar boundary-layer flow and heat transfer of a viscous income-pressible fluid over stretching sheet is studied numerically. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. A similarity transformation is used to reduce the governing boundary-layer equations to couple higher order non-linear ordinary differential equations. These equations are numerically solved using quasi-linearization technique. The effect of the governing parameters unsteadiness parameter and Prandtl number on velocity and temperature profile is discussed. Besides the numerical results for the local skin friction coefficient and local Nusselt number are presented. The computed results are compared with previously reported work. 展开更多
关键词 Quasi-Linearization Technique STRETCHING SHEET Boundary-layer UNSTEADY Flow Heat transfer
下载PDF
Experimental Study of Heat Transfer in a Real Scale Building Incorporating PCM in the Air Layer of the Vertical Walls
15
作者 Zahra Najam Mustapha El Alami Mostafa Najam 《Journal of Power and Energy Engineering》 2019年第5期14-25,共12页
The purpose of this paper is to study the energy efficiency of a local living space exposed to solar radiation in the subtropical climate of Casablanca. The study was mainly focused on the contribution of a phase chan... The purpose of this paper is to study the energy efficiency of a local living space exposed to solar radiation in the subtropical climate of Casablanca. The study was mainly focused on the contribution of a phase change material (PCM), inserted into a 7-cm thick air layer of a double brick wall, in two different locations. We note that the experimental study was conducted using two real-scale test cavities, located in the Faculty of Science Ain Chock-Casablanca. Two PCM mounting methods were used for the south and west walls, in order to test its energy efficiency as a storage and retrieval means of the solar flux coming from the outside. In the case of the southern wall, the PCM is put directly on the internal side of the outside part of the double wall (Case 1). For the west wall, the PCM is placed 1.2 cm away from the internal side of the outer part of the double wall (Case 2). The first result shows that the PCM placed to the wall allows storing the solar heat during the day and releasing it to the outside of the building at night. While in the second case, the PCM keeps the heat stored day and night. 展开更多
关键词 Experimental Study Heat transfer PCM Air layer Real-Scale BUILDING
下载PDF
Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer 被引量:1
16
作者 Krishnendu Bhattacharyya Tasawar Hayat Ahmed Alsaedi 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期314-319,共6页
In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing ... In this analysis,the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied.Using similarity transformations,the governing equations are converted to an ordinary differential equation and then solved analytically.The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case.The similarity solution is always unique in the stretching case,and in the shrinking case the solution shows dual nature for certain values of the parameters.For stronger magnetic field,the similarity solution for the shrinking sheet case becomes unique. 展开更多
关键词 magnetohydrodynamic boundary layer Casson fluid stretching/shrinking sheet wall mass transfer analytic solution
下载PDF
Droplet transfer behavior of the stainless steel coated electrode with double-layer coating
17
作者 孙咸 马成勇 +1 位作者 王宝 张汉谦 《China Welding》 EI CAS 2002年第2期124-129,共6页
In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in wa... In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'. 展开更多
关键词 droplet transfer stainless steel coated electrode double layer coating
下载PDF
Predicting Mass Transfer Extraction with Steam Flow, Applying Boundary-Layer Concepts
18
作者 Jose Antonio Rocha-Uribe Laura Catalina Soto-Armenta +1 位作者 Alfredo Raul Hernandez-Ruiz Jorge Ciro Jimenez-Ocaña 《Journal of Materials Science and Chemical Engineering》 2021年第6期46-58,共13页
Theory and concepts of boundary layer mass transfer is applied to correlate experimental data on extraction of essential oils from vegetable leaves and stems, using steam. From these theory, concepts and experimental ... Theory and concepts of boundary layer mass transfer is applied to correlate experimental data on extraction of essential oils from vegetable leaves and stems, using steam. From these theory, concepts and experimental data with seven systems, two correlations are developed to predict the Sherwood number and mass transfer coefficient as function of Reynolds and Schmidt numbers. From these equations, the molar flux, the amount of solute extracted, and the yield of extraction is predicted. A steam of higher temperature normally improves the mass transfer and the yield. A method to estimate the enhancement for temperature increase is proposed. The correlations developed are applied to a case with industrial size that was no part of the data for correlation generation. Theory may be applied for industrial applications. 展开更多
关键词 Boundary layer Essential Oil EXTRACTION YIELD Steam Distillation Mass transfer Coefficient
下载PDF
Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
19
作者 Huifang Zhao Chaofan Sun +2 位作者 Xiaochun Liu Hang Yin Ying Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期645-649,共5页
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh... We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds. 展开更多
关键词 time-dependent density functional theory(TDDFT) METHOD excited state intramolecular proton transfer(ESIPT) our own n-layered integrated MOLECULAR orbital and MOLECULAR mechanics(ONIOM) METHOD potential energy curves atomic dipole moment corrected Hirshfeld population(ADCH) charge
下载PDF
Effect of emitter layer doping concentration on the performance of a silicon thin film heterojunction solar cell
20
作者 张磊 沈鸿烈 +3 位作者 岳之浩 江丰 吴天如 潘园园 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期457-461,共5页
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter l... A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/epitaxial c-Si(47 p.m)/epitaxial c-Si(3 um) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3 +SiH4+H2)) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%. 展开更多
关键词 layer transfer silicon thin film heterojunction solar cell hot wire chemical vapor deposition doping concentration
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部