The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little re...The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 ℃, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 ℃, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.展开更多
Characteristics of thermal-hydraulic interaction of LBE (45w%Pb-55w%Bi) and lead with subcooled water in pool water were investigated experimentally. Two kinds of interaction zones (deformation and fragmentation) ...Characteristics of thermal-hydraulic interaction of LBE (45w%Pb-55w%Bi) and lead with subcooled water in pool water were investigated experimentally. Two kinds of interaction zones (deformation and fragmentation) and three kinds of interaction zones (solidification, deformation and fragmentation) were observed during LBE droplet/water interaction and lead droplet/water interaction, respectively. The fragmentation zone (FZ) could be identified exactly by two border lines: spontaneous nucleation temperature and minimum film boiling temperature. Within fragmentation zone, 10% to 35% tiny debris (diameter 〈 1 mm) of LBE and 5 to 8 kPa peak pressure generated with increasing the LBE temperature and no effect with increasing the subcooling of water. Only 2%-4% tiny debris (diameter 〈 1 mm) of lead and 2 kPa peak pressure generated regardless of lead and water temperature.展开更多
The research on the influence of RE on the directional solidified microstructure of tin lead alloy reveals that the addition of RE can cause chopping and irregular lamellar and smaller lamellar spacing. When RE conte...The research on the influence of RE on the directional solidified microstructure of tin lead alloy reveals that the addition of RE can cause chopping and irregular lamellar and smaller lamellar spacing. When RE content increases, the microstructure changes to peritectic structure. Moreover, the eutectic point of Sn Pb alloy deviates because the affinity of RE for Sn, which results in the existence of primary Pb rich phases contained hypocutectic grown layers. Sn RE intermetallic compound has no effect on the solidification of Sn Pb alloy.展开更多
The paper describes the damping effect of lead alloy absorber (LAA) by shake table test and finite element method of a kind of high-voltage electrical equipment, LW11-252/Q SF6 Circuit Breaker (LSCB). The strain reduc...The paper describes the damping effect of lead alloy absorber (LAA) by shake table test and finite element method of a kind of high-voltage electrical equipment, LW11-252/Q SF6 Circuit Breaker (LSCB). The strain reduction of the porcelain bushing of LSCB is defined as the damping effect of LAA in the paper based on the damage pattern of test equipment under earthquake. The test results show that LAA has reduced the acceleration response and strain response of the LSCB, at the same time, it does not increase the displacement response of the LSCB. There is a reduction of 30% in the strain of porcelain pipe. Moreover, the stronger the input ground motion is, the larger the reduction will be. The finite element method also indicates the damping effect of LAA, especially under ground motions with significant long period contents and ground motions with velocity pulse. Combined with the test results and calculation results, the paper gives the applicability of LAA finally.展开更多
The structural evolution of undercooled single-phase Ni-2wt%Pb monotectic alloy was systematically investigated by the method of molten glass denucleating combined with superheating cycle. Within the achieved undercoo...The structural evolution of undercooled single-phase Ni-2wt%Pb monotectic alloy was systematically investigated by the method of molten glass denucleating combined with superheating cycle. Within the achieved undercooling range of 22 to 280 K, the solidification structure undergoes three changes at 22 K, 88 K and 187 K, respectively. With the increase of undercooling, common dendrites, the first class granular grains, undercooled dendrites and the second class granular grains come out one after the other. Analytical results show that the granulation mechanism of the first class granular grains is owing to dendrite remelting and recrystallization, and the granulation mechanism of the second is owing to dendrite break-up and recrystallization.展开更多
Based on the phase diagrams, measured activities and the annexation principle, the calculating models of mass action concentrations for Cd-Pb, Pb-Sb and Cd-Sb binary as well as Cd-Pb-Sb ternary metallic melts have bee...Based on the phase diagrams, measured activities and the annexation principle, the calculating models of mass action concentrations for Cd-Pb, Pb-Sb and Cd-Sb binary as well as Cd-Pb-Sb ternary metallic melts have been formulated. The results of calculation both agree with practice and obey the mass action law. This in turn testifies that the models formulated can reflect the structural reality of corresponding melts and the annexation principle is applicable to these melts.展开更多
The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the pr...The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted.展开更多
The corrosion and oxygen evolution behaviors of cast and rolled Pb–Ag–Nd anodes were investigated by metalloscopy, environmental scanning electron microscopy, X-ray diffraction analysis, and various electrochemical ...The corrosion and oxygen evolution behaviors of cast and rolled Pb–Ag–Nd anodes were investigated by metalloscopy, environmental scanning electron microscopy, X-ray diffraction analysis, and various electrochemical measurements. The rolled anode exhibits fewer interdendritic boundaries and a dispersed distribution of Pb–Ag eutectic mixtures and Nd-rich phases in its cross-section. This feature inhibits rapid interdendritic corrosion into the metallic substrate along the interdendritic boundary network. In addition, the anodic layer formed on the rolled anode is more stable toward the electrolyte than that formed on the cast anode, reducing the corrosion of the metallic substrate during current interruption. Hence, the rolled anode has a higher corrosion resistance than the cast anode. However, the rolled anode exhibits a slightly higher anodic potential than the cast anode after 72 h of galvanostatic polarization, consistent with the larger charge transfer resistance. This larger charge transfer resistance may result from the oxygen-evolution reactive sites being blocked by the adsorption of more intermediates and oxygen species at the anodic layer/electrolyte interfaces of the rolled anode than at the interfaces of cast anode.展开更多
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the propert...The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA063506)Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.14KJB460026)Suzhou Science and Technology Support Program of China(Grant No.SS201344)
文摘The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 ℃, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 ℃, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.
文摘Characteristics of thermal-hydraulic interaction of LBE (45w%Pb-55w%Bi) and lead with subcooled water in pool water were investigated experimentally. Two kinds of interaction zones (deformation and fragmentation) and three kinds of interaction zones (solidification, deformation and fragmentation) were observed during LBE droplet/water interaction and lead droplet/water interaction, respectively. The fragmentation zone (FZ) could be identified exactly by two border lines: spontaneous nucleation temperature and minimum film boiling temperature. Within fragmentation zone, 10% to 35% tiny debris (diameter 〈 1 mm) of LBE and 5 to 8 kPa peak pressure generated with increasing the LBE temperature and no effect with increasing the subcooling of water. Only 2%-4% tiny debris (diameter 〈 1 mm) of lead and 2 kPa peak pressure generated regardless of lead and water temperature.
文摘The research on the influence of RE on the directional solidified microstructure of tin lead alloy reveals that the addition of RE can cause chopping and irregular lamellar and smaller lamellar spacing. When RE content increases, the microstructure changes to peritectic structure. Moreover, the eutectic point of Sn Pb alloy deviates because the affinity of RE for Sn, which results in the existence of primary Pb rich phases contained hypocutectic grown layers. Sn RE intermetallic compound has no effect on the solidification of Sn Pb alloy.
基金Joint Seismological Science Foundation of China (102012) Public Welfare Research Item, Ministry of Science and Technology of China.
文摘The paper describes the damping effect of lead alloy absorber (LAA) by shake table test and finite element method of a kind of high-voltage electrical equipment, LW11-252/Q SF6 Circuit Breaker (LSCB). The strain reduction of the porcelain bushing of LSCB is defined as the damping effect of LAA in the paper based on the damage pattern of test equipment under earthquake. The test results show that LAA has reduced the acceleration response and strain response of the LSCB, at the same time, it does not increase the displacement response of the LSCB. There is a reduction of 30% in the strain of porcelain pipe. Moreover, the stronger the input ground motion is, the larger the reduction will be. The finite element method also indicates the damping effect of LAA, especially under ground motions with significant long period contents and ground motions with velocity pulse. Combined with the test results and calculation results, the paper gives the applicability of LAA finally.
基金the National Natural Science Foundation of China(Grant No:59871041)and the Natural Science Foundation of Shaanxi Education Admin
文摘The structural evolution of undercooled single-phase Ni-2wt%Pb monotectic alloy was systematically investigated by the method of molten glass denucleating combined with superheating cycle. Within the achieved undercooling range of 22 to 280 K, the solidification structure undergoes three changes at 22 K, 88 K and 187 K, respectively. With the increase of undercooling, common dendrites, the first class granular grains, undercooled dendrites and the second class granular grains come out one after the other. Analytical results show that the granulation mechanism of the first class granular grains is owing to dendrite remelting and recrystallization, and the granulation mechanism of the second is owing to dendrite break-up and recrystallization.
文摘Based on the phase diagrams, measured activities and the annexation principle, the calculating models of mass action concentrations for Cd-Pb, Pb-Sb and Cd-Sb binary as well as Cd-Pb-Sb ternary metallic melts have been formulated. The results of calculation both agree with practice and obey the mass action law. This in turn testifies that the models formulated can reflect the structural reality of corresponding melts and the annexation principle is applicable to these melts.
基金supported by the China Postdoctoral Science Foundation (No. 20110491492)National Natural Science Foundation of China (No. 50765005)the Innovative Group of Science and Technology of College of Jiangxi Province,China (No. 00008713)
文摘The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted.
基金financially supported by the National Natural Science Foundation of China(Nos.51204208 and 51374240)the Natural Science Foundation of Hunan Provincial,China(No.13JJ1003)the Fundamental Research Funds for the Central Universities of Central South University(No.2014zzts028)
文摘The corrosion and oxygen evolution behaviors of cast and rolled Pb–Ag–Nd anodes were investigated by metalloscopy, environmental scanning electron microscopy, X-ray diffraction analysis, and various electrochemical measurements. The rolled anode exhibits fewer interdendritic boundaries and a dispersed distribution of Pb–Ag eutectic mixtures and Nd-rich phases in its cross-section. This feature inhibits rapid interdendritic corrosion into the metallic substrate along the interdendritic boundary network. In addition, the anodic layer formed on the rolled anode is more stable toward the electrolyte than that formed on the cast anode, reducing the corrosion of the metallic substrate during current interruption. Hence, the rolled anode has a higher corrosion resistance than the cast anode. However, the rolled anode exhibits a slightly higher anodic potential than the cast anode after 72 h of galvanostatic polarization, consistent with the larger charge transfer resistance. This larger charge transfer resistance may result from the oxygen-evolution reactive sites being blocked by the adsorption of more intermediates and oxygen species at the anodic layer/electrolyte interfaces of the rolled anode than at the interfaces of cast anode.
基金financial support of the National Natural Science Foundation of China (No.51004056)the Applied Basic Research Foundation of Yunnan Province (No. 2010ZC052)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20125314110011)
文摘The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance.