期刊文献+
共找到50,137篇文章
< 1 2 250 >
每页显示 20 50 100
Simple electrode assembly engineering:Toward a multifunctional lead-acid battery
1
作者 Xiaojuan Cao Xiaoyu Yan +4 位作者 Kai Zhao Le Ke Xiaoyi Jiang Lingjiao Li Ning Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期536-543,共8页
Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-ef... Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-effectiveness and safety records.Despite of 165 years of development,the low energy density as well as the coupled power and energy density scaling restrain its wider application in real life.To address this challenge,we optimized the configuration of conventional Pb-acid battery to integrate two gas diffusion electrodes.The novel device can work as a Pb-air battery using ambient air,showing a peak power density of 183 mW cm^(−2),which was comparable with other state-of-the-art metal-O_(2)batteries.It can also behave as a fuel cell,simultaneously converting H_(2)and air into electricity with a peak power density of 75 mW cm^(−2).Importantly,this device showed little performance degradation after 35 h of the longevity test.Our work shows the exciting potential of lead battery technology and demonstrates the importance of battery architecture optimization toward improved energy storage capacity. 展开更多
关键词 lead-acid battery Decoupled electrode reaction Energy storage Discharge capacity Fuel cell
下载PDF
PREPARATION OF LEAD-ACID BATTERY USING ELECTROPLATED RETICULATED SiC AS THE POSITIVE CURRENT COLLECTOR
2
作者 Z.M.Zou X.M.Cao C.Tian J.S.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第2期107-112,共6页
The possibility of using Pb-electroplated reticulated SiC as the positive current collector for lead-acid batteries was investigated. Reticulated SiC with two aperture sizes (3 and 2mm) were tested as the substrate of... The possibility of using Pb-electroplated reticulated SiC as the positive current collector for lead-acid batteries was investigated. Reticulated SiC with two aperture sizes (3 and 2mm) were tested as the substrate of positive electrode. It was found that the reticulated SiC has an excellent corrosion resistance in H2SO4 solution, and the Pb layer electroplated on reticulated SiC showed analogous electrochemical behavior to metal Pb. Preliminary test of the battery performance indicated that the utilization efficiency of the positive active mass of new designed batteries are improved compared with the conventional batteries. The improvement could be ascribed to the high specific surface area of the reticulated structured positive current collector, which was further supported by the even better performance of the battery made from a smaller aperture size (2mm) reticulated SiC as the substrate of the positive electrode. 展开更多
关键词 lead-acid battery reticulated SiC ELECTROPLATING current collector
下载PDF
Application of a Sulfur Removal Hydrometallurgical Process in a Lead-Acid Battery Recycling Plant in Costa Rica
3
作者 Marta Navarro-Monge Germain Esquivel-Hernandez +4 位作者 Jose Pablo Sibaja Brenes Jose Carlos Mora-Barrantes Ricardo Sanchez-Murillo Juan Valdes-Gonzalez Pablo Bolanos-Ulloa 《Open Journal of Air Pollution》 2017年第1期18-26,共9页
This study presents the implementation of a desulphurization process for lead recycling under different chemical and physical conditions using pyro-metallurgical processes. Desulphurization was done using a hydrometal... This study presents the implementation of a desulphurization process for lead recycling under different chemical and physical conditions using pyro-metallurgical processes. Desulphurization was done using a hydrometallurgical process using sodium carbonate as a desulphurization agent and different lead-bearing loads compositions. Waste characterization included: SO2 concentrations in the stack emissions, total lead content in the furnace ash, the total lead content in the slag, and the toxicity characteristic leaching procedure (TCLP). A significant reduction in SO2 emissions was achieved (~55% reduction) where mean SO2 concentrations changed from 2193 ± 135 ppm to 1006 ± 62 ppm after the implementation of the modified processes. The desulfurized lead paste (i.e. the metallic fraction lead of the battery) of the modified process exhibited an improvement in the concentration of the lead in the TCLP test, with an average value of 1.5 ppm which is below US EPA limit of 5 ppm. The traditional process TCLP mean value for the TCLP was 54.2 ppm. The total lead content in the bag house ashes shows not significant variations, when comparing the desulphurization (67.6% m/m) and non-desulphurization process (64.9% m/m). The total lead mean content in the slag was higher in the desulphurization process (2.49% m/m) than the traditional process (1.91% m/m). Overall, the implementation of a new desulphurization method would potentially increase the operation costs in 10.3%. At the light of these results, a combination of hydrometallurgical and pyro-metallurgical processes in the recycling of lead-acid batteries can be used to reduce the environmental impact of these industries but would increase the operational costs of small lead recyclers. 展开更多
关键词 lead-acid battery Recycling Hydrometallurgical and Pyro-Metallurgical Processes Hazardous Waste Management
下载PDF
Mathematical Model and Experiment of Temperature Effect on Discharge of Lead-Acid Battery for PV Systems in Tropical Area
4
作者 Boonyang Plangklang Pornchai Pornharuthai 《Energy and Power Engineering》 2013年第1期43-49,共7页
This paper presents Mathematical Model and Experiment of Temperature effect on Charge and Discharge of Lead-Acid Battery performance in PV system power supply. To test temperature effect on battery discharge cycles, a... This paper presents Mathematical Model and Experiment of Temperature effect on Charge and Discharge of Lead-Acid Battery performance in PV system power supply. To test temperature effect on battery discharge cycles, a temperature range of tropical area from 25 - 60 degrees Celsius in a simulator is set up for testing. This temperature range is normally practical for battery usage. This allows the battery to determine the parameters of the battery quickly and high accurate. A Mathematical Model with MATLAB Program is written and constructed as block diagram using the equations of battery the parameters. By running program, the effects of various parameters are investigated. The results showed that time of discharge the battery is longer. Then, the experiment is set up by battery VRLA 12 V 20 AH. The results confirmed the mathematical model simulations. 展开更多
关键词 Mathematic MODEL TEMPERATURE Effect lead-acid battery
下载PDF
Effect of lead foam grid on performance of lead-acid battery 被引量:1
5
作者 戴长松 王殿龙 +2 位作者 胡信国 姜兆华 阎志刚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第1期95-100,共6页
In order to increase the specific energy and specific power of a lead-acid battery, lead foam grid was prepared by electrodepositing Pb-Sn alloy on a copper foam substrate and used as negative current collector for a ... In order to increase the specific energy and specific power of a lead-acid battery, lead foam grid was prepared by electrodepositing Pb-Sn alloy on a copper foam substrate and used as negative current collector for a lead acid battery whose capacity was limited by the negative plate. Comparing the effect of the cast grid, under the same conditions, the mass of lead foam grid decreases by 35%, and the area of lead foam contacted with active material increases by about 20 times. Under 2 h rate discharge condition, with a high current (3 0 I2) e and low-temperature (-10 ℃, I2) discharge system, the lead foam grid markedly boosts the discharge performance of lead acid battery. It increases not only the negative electrode mass specific capacity by 27%,37% and 29%,but also the utilization efficiency of the negative active material by 5%. Compared with the negative electrode of cast grid, XRD and SEM results show that after 20 cycles at the state of charge, the sponge lead in the negative lead foam electrode has smaller crystals and less PbSO4 on its surface. Meanwhile, at the state of full discharge, the PbSO4 crystals are smaller and occur less on the surface of lead foam electrode. This indicates its active material reacts more uniformly. 展开更多
关键词 lead acid battery negative active material grid material lead foam specific capacity
下载PDF
Physics-based battery SOC estimation methods:Recent advances and future perspectives 被引量:1
6
作者 Longxing Wu Zhiqiang Lyu +2 位作者 Zebo Huang Chao Zhang Changyin Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期27-40,I0003,共15页
The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical mod... The reliable prediction of state of charge(SOC)is one of the vital functions of advanced battery management system(BMS),which has great significance towards safe operation of electric vehicles.By far,the empirical model-based and data-driven-based SOC estimation methods of lithium-ion batteries have been comprehensively discussed and reviewed in various literatures.However,few reviews involving SOC estimation focused on electrochemical mechanism,which gives physical explanations to SOC and becomes most attractive candidate for advanced BMS.For this reason,this paper comprehensively surveys on physics-based SOC algorithms applied in advanced BMS.First,the research progresses of physical SOC estimation methods for lithium-ion batteries are thoroughly discussed and corresponding evaluation criteria are carefully elaborated.Second,future perspectives of the current researches on physics-based battery SOC estimation are presented.The insights stated in this paper are expected to catalyze the development and application of the physics-based advanced BMS algorithms. 展开更多
关键词 Lithium-ion batteries State of charge Electrochemical model battery management system
下载PDF
Inherent thermal-responsive strategies for safe lithium batteries 被引量:2
7
作者 Jia-Xin Guo Chang Gao +9 位作者 He Liu Feng Jiang Zaichun Liu Tao Wang Yuan Ma Yiren Zhong Jiarui He Zhi Zhu Yuping Wu Xin-Bing Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期519-534,I0012,共17页
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele... Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries. 展开更多
关键词 Lithium battery Thermal safety Thermal runaway Thermal-responsive
下载PDF
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:2
8
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides Anodes NANOCOMPOSITE
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:1
9
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery Blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries 被引量:2
10
作者 Jiayi Li Li Gao +7 位作者 Fengying Pan Cheng Gong Limeng Sun Hong Gao Jinqiang Zhang Yufei Zhao Guoxiu Wang Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期187-221,共35页
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect... Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries. 展开更多
关键词 Shuttle effect Designed strategies Li-S battery Lithium polysulfides
下载PDF
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:2
11
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Electro-spraying/spinning: A novel battery manufacturing technology 被引量:1
12
作者 Zhuan Hu Jiaxin Hao +4 位作者 Dongyang Shen Caitian Gao Zhaomeng Liu Jianguo Zhao Bingan Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期81-88,共8页
Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can... Lithium-ion battery(LIB) industry seems to have met its bottle neck in cutting down producing costs even though much efforts have been put into building a complete industrial chain. Actually, manufacturing methods can greatly affect the cost of battery production. Up to now, lithium ion battery producers still adopt manufacturing methods with cumbersome sub-components preparing processes and costly assembling procedures, which will undoubtedly elevate the producing cost. Herein, we propose a novel approach to directly assemble battery components(cathode, anode and separator) in an integrated way using electro-spraying and electro-spinning technologies. More importantly, this novel battery manufacturing method can produce LIBs in large scale, and the products show excellent mechanical strength, flexibility, thermal stability and electrolyte wettability. Additionally, the performance of the as-prepaed Li Fe PO_(4)||graphite full cell produced by this new method is comparable or even better than that produced by conventional manufacturing approach. In brief, this work provides a new promising technology to prepare LIBs with low cost and better performance. 展开更多
关键词 Electro-spraying Electro-spinning Integrated electrode Lithium-ion battery
下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:1
13
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
14
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte Gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Interface engineering strategy via electron-defect trimethyl borate additive toward 4.7 V ultrahigh-nickel LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)battery 被引量:1
15
作者 Yilin Zhang Yuqing Chen +6 位作者 Qiu He Jinlong Ke Wei Wang Jian-Fang Wu Peng Gao Yanhua Li Jilei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期639-647,共9页
The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,th... The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,the practical application is impeded by the instability of electrode/electrolyte interface and Ni-rich cathode itself.Herein we proposed an electron-defect electrolyte additive trimethyl borate(TMB)which is paired with the commercial carbonate electrolyte to construct highly conductive fluorine-and boron-rich cathode electrolyte interface(CEI)on LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM90)surface and solid electrolyte interphase(SEI)on lithium metal surface.The modified CEI effectively mitigates the structural transformation from layered to disordered rock-salt phase,and consequently alleviate the dissolution of transition metal ions(TMs)and its“cross-talk”effect,while the enhanced SEI enables stable lithium plating/striping and thus demonstrated good compatibility between electrolyte and lithium metal anode.As a result,the common electrolyte with 1 wt%TMB enables 4.7 V NCM90/Li cell cycle stably over 100 cycles with 70%capacity retention.This work highlights the significance of the electron-defect boron compounds for designing desirable interfacial chemistries to achieve high performance NCM90/Li battery under high voltage operation. 展开更多
关键词 NCM90 batteries Electrolyte additive Trimethyl borate
下载PDF
Revealing the Multifunctional Electrocatalysis of Indium-Modulated Phthalocyanine for High-Performance Lithium-Sulfur Batteries 被引量:1
16
作者 Yang Guo Zhaoqing Jin +5 位作者 Jianhao Lu Zilong Wang Zihao Song Anbang Wang Weikun Wang Yaqin Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期1-8,共8页
The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candid... The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries. 展开更多
关键词 bidirectional catalyst indium phthalocyanine lithium-sulfur batteries pouch cells
下载PDF
Design of multifunctional polymeric binders in silicon anodes for lithium‐ion batteries 被引量:2
17
作者 Masytha Nuzula Ramdhiny Ju‐Won Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期140-163,共24页
Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anode... Silicon(Si)is a promising anode material for lithium‐ion batteries(LIBs)owing to its tremendously high theoretical storage capacity(4200 mAh g−1),which has the potential to elevate the energy of LIBs.However,Si anodes exhibit severe volume change during lithiation/delithiation processes,resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers.As a result,the cycling stability of Si anodes is insufficient for commercialization in LIBs.Polymeric binders can play critical roles in Si anodes by affecting their cycling stability,although they occupy a small portion of the electrodes.This review introduces crucial factors influencing polymeric binders'properties and the electrochemical performance of Si anodes.In particular,we emphasize the structure–property relationships of binders in the context of molecular design strategy,functional groups,types of interactions,and functionalities of binders.Furthermore,binders with additional functionalities,such as electrical conductivity and self‐healability,are extensively discussed,with an emphasis on the binder design principle. 展开更多
关键词 CONDUCTIVITY lithium‐ion batteries molecular interactions polymeric binders self‐healability Si anodes
下载PDF
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries 被引量:1
18
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 Li-ion battery Fast-charging Low temperature Non-solvating diluent Shielding effect
下载PDF
Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization 被引量:1
19
作者 Birhanu Bayissa Gicha Lemma Teshome Tufa +2 位作者 Njemuwa Nwaji Xiaojun Hu Jaebeom Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期209-246,共38页
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ... Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs. 展开更多
关键词 All-solid-state lithium-sulfur batteries COMMERCIALIZATION Enhancement strategies Solid-state electrolytes Sulfurbased cathodes
下载PDF
Stabilizing zinc anode using zeolite imidazole framework functionalized separator for durable aqueous zinc-ion batteries 被引量:1
20
作者 Weisong Zhang Xinyan Zhu +8 位作者 Ling Kang Ziyu Peng Jing Zhu Liang Pan Lei Dai Shude Liu Ling Wang Yongguang Liu Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期23-31,I0003,共10页
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for... Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Separators modifications ZIF-8 Zn deposition Dendrite-free
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部