In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of...In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.展开更多
This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined r...This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.展开更多
In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,non...In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.展开更多
Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to c...Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to cyber-attacks with potentially catastrophic consequences.To this end,we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’communication infrastructure.The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations.Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial ofservice(DoS)attacks.展开更多
This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instant...This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
We analyse the fixed-time consensus problem for multi-agent systems with leaderfollower mode. Based on a follower’s observation structure for the leader’s information, it is proved that the estimation errors can be ...We analyse the fixed-time consensus problem for multi-agent systems with leaderfollower mode. Based on a follower’s observation structure for the leader’s information, it is proved that the estimation errors can be converged to zero at a fixed time. From this stability and a sliding mode structure, we derive a control input of followers, which provides a critical support for fixed-time consensus. The simulation results demonstrate that this control approach does conduce to the implementation of the fixed-time synchronization.展开更多
In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded conse...In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation...Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation and control tasks for an ADN.The distributed information exchange protocols of the distributed generation(DG)group devoted to node voltage regulation or exchange power control are developed using a DG power utilization ratio as the consensus variable.On these bases,this study further investigates the leader optimal selection method for a DG group to improve the response speed of the distributed control system.Furthermore,a single or multiple leader selection model is established to minimize the constraints of the one-step convergence factor and the number of leaders to improve the response speed of the distributed control system.The simulation results of the IEEE 33 bus standard test system show the effectiveness of the proposed distributed control strategy.In addition,the response speed of a DG control group can be improved effectively when the single or multiple leaders are selected optimally.展开更多
In this paper,the strong structural controllability of the leader-follower framework is discussed.Firstly,the authors analyze different edge augmentation methods to preserve the strong structural controllability of th...In this paper,the strong structural controllability of the leader-follower framework is discussed.Firstly,the authors analyze different edge augmentation methods to preserve the strong structural controllability of the path-bud topology.The following four cases are considered:Adding edges from the path to the bud;adding edges from the bud to the path;adding the reverse or forward edges to the path or bud;and adding both the reverse and forward edges to the path or bud.Then sufficient conditions are derived for the strong structural controllability of the new topologies which are generated by adding different edges.In addition,it is proved that rank[A B]=n is a necessary condition for the strong structural controllability.Finally,three examples are given to verify the effectiveness of the main results.展开更多
In this paper,a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals.The coefficients in the state equation and the weighting matrices i...In this paper,a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals.The coefficients in the state equation and the weighting matrices in the cost functionals are all deterministic.Closed-loop strategies are introduced,which require to be independent of initial states;and such a nature makes it very useful and convenient in applications.The follower first solves a stochastic linear quadratic optimal control problem,and his optimal closed-loop strategy is characterized by a Riccati equation,together with an adapted solution to a linear backward stochastic differential equation.Then the leader turns to solve a stochastic linear quadratic optimal control problem of a forward-backward stochastic differential equation,necessary conditions for the existence of the optimal closed-loop strategy for the leader is given by a Riccati equation.Some examples are also given.展开更多
This paper studies the dynamic event-triggered leader-follower consensus of nonlinear multi-agent systems(MASs)under directed weighted graph containing a directed spanning tree,and also considers the effects of distur...This paper studies the dynamic event-triggered leader-follower consensus of nonlinear multi-agent systems(MASs)under directed weighted graph containing a directed spanning tree,and also considers the effects of disturbances and leader of non-zero control inputs in the system.Firstly,a novel distributed control protocol is designed for uncertain disturbances and leader of non-zero control inputs in MASs.Secondly,a novel dynamic event-triggered control(DETC)strategy is proposed,which eliminates the need for continuous communication between agents and reduces communication resources between agents.By introducing dynamic thresholds,the complexity of excluding Zeno behavior within the system is reduced.Finally,the effectiveness of the proposed theory is validated through numerical simulation.展开更多
基金This work was supported in part by the National Key Research and Development Program of China(2021YFB3202200)Guangdong Basic and Applied Basic Research Foundation(2020B1515120071,2021B1515120017).
文摘In this paper,the leader-follower consensus problem for a multiple flexible manipulator network with actuator failures,parameter uncertainties,and unknown time-varying boundary disturbances is addressed.The purpose of this study is to develop distributed controllers utilizing local interactive protocols that not only suppress the vibration of each flexible manipulator but also achieve consensus on joint angle position between actual followers and the virtual leader.Following the accomplishment of the reconstruction of the fault terms and parameter uncertainties,the adaptive neural network method and parameter estimation technique are employed to compensate for unknown items and bounded disturbances.Furthermore,the Lyapunov stability theory is used to demonstrate that followers’angle consensus errors and vibration deflections in closed-loop systems are uniformly ultimately bounded.Finally,the numerical simulation results confirm the efficacy of the proposed controllers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60674037,61074017 and 61074004)the Program for New Century Excellent Talents in Universities (Grant No. NCET-09-0674)the Program for Liaoning Excellent Talents in Universities (Grant No. 2009R06)
文摘This paper is concerned with the formation control problem of multiple underactuated surface vessels moving in a leader-follower formation. The formation is achieved by the follower to track a virtual target defined relative to the leader. A robust adaptive target tracking law is proposed by using neural network and backstepping techniques. The advantage of the proposed control scheme is that the uncertain nonlinear dynamics caused by Coriolis/centripetal forces, nonlinear damping, unmodeled hydrodynamics and disturbances from the environment can be compensated by on line learning. Based on Lyapunov analysis, the proposed controller guarantees the tracking errors converge to a small neighborhood of the origin. Simulation results demonstrate the effectiveness of the control strategy.
基金This work was supported by Tianjin Natural Science Foundation of China(20JCYBJC01060,20JCQNJC01450)the National Natural Science Foundation of China(61973175)Tianjin Postgraduate Scientific Research and Innovation Project(2020YJSZXB03,2020YJSZXB12).
文摘In this paper,the distributed fuzzy fault-tolerant tracking consensus problem of leader-follower multi-agent systems(MASs)is studied.The objective system includes actuator faults,mismatched parameter uncertainties,nonlinear functions,and exogenous disturbances under switching communication topologies.To solve this problem,a distributed fuzzy fault-tolerant controller is proposed for each follower by adaptive mechanisms to track the state of the leader.Furthermore,the fuzzy logic system is utilized to approximate the unknown nonlinear dynamics.An error estimator is introduced between the mismatched parameter matrix and the input matrix.Then,a selective adaptive law with relative state information is adopted and applied.When calculating the Lyapunov function’s derivative,the coupling terms related to consensus error and mismatched parameter uncertainties can be eliminated.Finally,a numerical simulation is given to validate the effectiveness of the proposed protocol.
文摘Multi-agent systems are usually equipped with open communication infrastructures to improve interactions efficiency,reliability and sustainability.Although technologically costeffective,this makes them vulnerable to cyber-attacks with potentially catastrophic consequences.To this end,we present a novel control architecture capable to deal with the distributed constrained regulation problem in the presence of time-delay attacks on the agents’communication infrastructure.The basic idea consists of orchestrating the interconnected cyber-physical system as a leader-follower configuration so that adequate control actions are computed to isolate the attacked unit before it compromises the system operations.Simulations on a multi-area power system confirm that the proposed control scheme can reconfigure the leader-follower structure in response to denial ofservice(DoS)attacks.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011, and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology(HUST),China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘This paper is concerned with the stochastic bounded consensus tracking problems of leader-follower multi-agent systems, where the control input of an agent can only use the information measured at the sampling instants from its neighbours or the virtual leader with a time-varying reference state, and the measurements are corrupted by random noises. The probability limit theory and the algebra graph theory are employed to derive the necessary and sufficient conditions guaranteeing the mean square bounded consensus tracking. It is shown that the maximum allowable upper boundary of the sampling period simultaneously depends on the constant feedback gains and the network topology. Furthermore, the effects of the sampling period on the tracking performance are analysed. It turns out that from the view point of the sampling period, there is a trade-off between the tracking speed and the static tracking error. Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金Supported by the National Natural Science Foundation of China(11401577,11671011)
文摘We analyse the fixed-time consensus problem for multi-agent systems with leaderfollower mode. Based on a follower’s observation structure for the leader’s information, it is proved that the estimation errors can be converged to zero at a fixed time. From this stability and a sliding mode structure, we derive a control input of followers, which provides a critical support for fixed-time consensus. The simulation results demonstrate that this control approach does conduce to the implementation of the fixed-time synchronization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011,and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,HUST,China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.
文摘Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation and control tasks for an ADN.The distributed information exchange protocols of the distributed generation(DG)group devoted to node voltage regulation or exchange power control are developed using a DG power utilization ratio as the consensus variable.On these bases,this study further investigates the leader optimal selection method for a DG group to improve the response speed of the distributed control system.Furthermore,a single or multiple leader selection model is established to minimize the constraints of the one-step convergence factor and the number of leaders to improve the response speed of the distributed control system.The simulation results of the IEEE 33 bus standard test system show the effectiveness of the proposed distributed control strategy.In addition,the response speed of a DG control group can be improved effectively when the single or multiple leaders are selected optimally.
基金supported by the National Natural Science Foundation of China under Grant Nos. 61873136 and 62033007Taishan Scholars Climbing Program of Shandong Province of ChinaTaishan Scholars Project of Shandong Province of China under Grant No. ts20190930
文摘In this paper,the strong structural controllability of the leader-follower framework is discussed.Firstly,the authors analyze different edge augmentation methods to preserve the strong structural controllability of the path-bud topology.The following four cases are considered:Adding edges from the path to the bud;adding edges from the bud to the path;adding the reverse or forward edges to the path or bud;and adding both the reverse and forward edges to the path or bud.Then sufficient conditions are derived for the strong structural controllability of the new topologies which are generated by adding different edges.In addition,it is proved that rank[A B]=n is a necessary condition for the strong structural controllability.Finally,three examples are given to verify the effectiveness of the main results.
基金This work was supported by National Key Research&Development Program of China under Grant No.2022YFA1006104National Natural Science Foundations of China under Grant Nos.11971266,11831010Shandong Provincial Natural Science Foundations under Grant Nos.ZR2022JQ01,ZR2020ZD24,ZR2019ZD42.
文摘In this paper,a leader-follower stochastic differential game is studied for a linear stochastic differential equation with quadratic cost functionals.The coefficients in the state equation and the weighting matrices in the cost functionals are all deterministic.Closed-loop strategies are introduced,which require to be independent of initial states;and such a nature makes it very useful and convenient in applications.The follower first solves a stochastic linear quadratic optimal control problem,and his optimal closed-loop strategy is characterized by a Riccati equation,together with an adapted solution to a linear backward stochastic differential equation.Then the leader turns to solve a stochastic linear quadratic optimal control problem of a forward-backward stochastic differential equation,necessary conditions for the existence of the optimal closed-loop strategy for the leader is given by a Riccati equation.Some examples are also given.
基金supported by the National Natural Science Foundation of China(62173175)。
文摘This paper studies the dynamic event-triggered leader-follower consensus of nonlinear multi-agent systems(MASs)under directed weighted graph containing a directed spanning tree,and also considers the effects of disturbances and leader of non-zero control inputs in the system.Firstly,a novel distributed control protocol is designed for uncertain disturbances and leader of non-zero control inputs in MASs.Secondly,a novel dynamic event-triggered control(DETC)strategy is proposed,which eliminates the need for continuous communication between agents and reduces communication resources between agents.By introducing dynamic thresholds,the complexity of excluding Zeno behavior within the system is reduced.Finally,the effectiveness of the proposed theory is validated through numerical simulation.