[Objectives]To explore the genetic mechanism that leaf length and leaf width in bitter gourd has realistic guiding significance for formulating breeding strategy.[Methods]In this paper,the cross was made between CN19-...[Objectives]To explore the genetic mechanism that leaf length and leaf width in bitter gourd has realistic guiding significance for formulating breeding strategy.[Methods]In this paper,the cross was made between CN19-1 and Thai4-6 and an F2segregation population was constructed.The genetic characteristics of leaf length and leaf width were analyzed by employing the major gene plus polygene mixed genetic model.[Results]The data analysis results demonstrated that the leaf length and leaf width of the F_(2) segregation population showed continuous distribution.The optimum model for leaf length genetic analysis was A-1,the additive effect value of the major gene was 3.1766,the dominant effect value was-3.1766,and the heritability was 74.51%.The optimum model for leaf width genetic analysis was B-1.The additive effect values of 2 pairs of major genes controlling the leaf width were 3.1917 and 0.9623,respectively.The dominant effect values were-1.3135 and-0.3463,respectively.The additive×additive interaction effect was-0.3591,the additive×dominant interaction effect was-0.2570,the dominant×additive interaction effect was 1.9916,the dominant×dominant interaction effect was 1.9686.The heritability of major genes was 96.67%.[Conclusions]This study is expected to provide a theoretical basis for the breeding of bitter gourd.展开更多
The present study was conducted to identify quantitative trait loci (QTLs) for leaf size traits in IR64 introgression lines (INLs). For this purpose, selected F2 populations derived from crosses between recurrent ...The present study was conducted to identify quantitative trait loci (QTLs) for leaf size traits in IR64 introgression lines (INLs). For this purpose, selected F2 populations derived from crosses between recurrent parent IR64 and its derived INLs, unique for leaf length and leaf width, were used to confirm QTLs. A total of eight QTLs, mapped on three chromosomes, were identified for the four leaf size traits in six F2 populations. A QTL for leaf length, qLLnpt-1, in HKL69 was identified around simple sequence repeat (SSR) marker RM3709 on chromosome 1. Two QTLs for flag leaf length, qFLLnpt-2 and qFLLnpt-4, in HFG39 were indentified on chromosomes 2 and 4, respectively. For flag leaf width, a QTL, qFLWnpt-4, in HFG39 was identified around RM17483 on chromosome 4. While another QTL for flag leaf width, qFLWnpt-1, in HFG27 was identified around RM3252 on chromosome 1. A QTL for leaf width, qLWnpt-2, in HKL75 was identified around RM7451 on chromosome 2. For leaf width, two QTLs, qLWnpt-4a, qLWnpt-4b, in HKL48 and HKL99 were identified around RM7208 and RM6909, respectively on chromosome 4. Results from this study suggest the possibilities to use marker-assisted selection and pyramiding these QTLs to improve rice water productivity.展开更多
Convenient and effective methods to determine seasonal changes in individual leaf area (LA) and leaf mass (LM) of plants are useful in research on plant physiology and forest ecology. However, practical methods for es...Convenient and effective methods to determine seasonal changes in individual leaf area (LA) and leaf mass (LM) of plants are useful in research on plant physiology and forest ecology. However, practical methods for estimating LA and LM of elm (Ulmus japonica) leaves in different periods have rarely been reported. We collected sample elm leaves in June, July and September. Then, we developed allometric models relating LA, LM and leaf parameters, such as leaf length (L) and width (W) or the product of L and W (LW). Our objective was to find optimal allometric models for conveniently and effectively estimating LA and LM of elm leaves in different periods. LA and LM were significantly correlated with leaf parameters (P < 0.05), and allometric models with LW as an independent variable were best for estimating LA and LM in each period. A linear model was separately developed to predict LA of elm leaves in June, July and September, and it yielded high accuracies of 93, 96 and 96%, respectively. Similarly, a specific allometric model for predicting LM was developed separately in three periods, and the optimal model form in both June and July was a power model, but the linear model was optimal for September. The accuracies of the allometric models in predicting LM were 88, 83 and 84% for June, July and September, respectively. The error caused by ignoring seasonal variation of allometric models in predicting LA and LM in the three periods were 1-4 and 16-59%, respectively.展开更多
Dry seeding is a resource-saving rice establishment method. With an equivalent yield, dry seeded flooded rice (DSR) has been considered as a replacement for traditional transplanted flooded rice (TFR). However, th...Dry seeding is a resource-saving rice establishment method. With an equivalent yield, dry seeded flooded rice (DSR) has been considered as a replacement for traditional transplanted flooded rice (TFR). However, the differences in leaf and root senescence during grain filling between DSR and TFR were seldom identified. In this study, the root length, root tip number and leaf senescence of rice varieties Huanghuazhan and Yangliangyou 6 during ripening were compared between DSR and TFR. Results showed that top three leaves in DSR had the characteristics of relatively lower SPAD value, lower N content and premature leaf senescence. In addition, both the total root length and total root tip number of DSR were significantly lower than those of TFR. In conclusion, premature and quick leaf senescence was related with inadequate root length and root tip number during ripening, which might result from the deficiency of nitrogen supply in DSR. Techniques on improving leaf nitrogen status and delaying the leaf senescence during grain-filling in DSR should be developed in future researches.展开更多
Chlorophyll fluorescence is a well established technique to rapidly and non-invasively determine photosynthesis parameters in plant leaves. It can be used in both laboratory and field settings, and frequently dark-ada...Chlorophyll fluorescence is a well established technique to rapidly and non-invasively determine photosynthesis parameters in plant leaves. It can be used in both laboratory and field settings, and frequently dark-adaptation of a leaf sample is called for. In the field, this can be accomplished on flat leaves using standard leaf clips supplied by instrument manufacturers. However, not all plant leaves are flat, many are cylindrical or otherwise three-dimensional in shape. The standard leaf clip does not close fully on three-dimensional leaves, therefore, does not allow the sample to be properly dark adapted in the field. A new leaf “wand” was developed that can be slipped over an entire cylindrical leaf or culm of rushes and sedges for both light- and dark-adapted measurements. This new leaf wand is compared to the standard leaf clip (DLC-8) using a Walz mini-PAM on Juncus roemerianus(Black needlerush). Results indicate that dark-adapted yield measurements are not significantly different between leaf clips, while light-adapted yields are higher with the leaf wand. The potential sources of difference in the optical path of the excitation light and fluorescence return are discussed and compared between leaf clips. Construction of specialized leaf wands should be considered for any leaves are not flat and therefore that do not fit the standard leaf clip for complete dark-adaptation under field conditions.展开更多
A novel phytoplasma was detected in a cherry plum(Prunus cerasifera Ehrh) tree that mainly showed yellow leaf symptom. The tree was growing in an orchard located in Yangling District, Shaanxi Province, China. The le...A novel phytoplasma was detected in a cherry plum(Prunus cerasifera Ehrh) tree that mainly showed yellow leaf symptom. The tree was growing in an orchard located in Yangling District, Shaanxi Province, China. The leaves started as chlorotic and yellowing along leaf minor veins and leaf tips. Chlorosis rapidly developed to inter-veinal areas with the whole leaf becoming pale yellow in about 1-4 wk. Large numbers of phytoplasma-like bodies(PLBs) were seen under transmission electron microscopy. The majority of the PLBs was spherical or elliptical vesicles, with diameters in range of 0.1-0.6 μm, and distributed in the phloem cells of the infected tissues. A 1 246-bp 16 S ribosomal RNA(rRNA) gene fragment was amplified from DNA samples extracted from the yellow leaf tissues using two phytoplasma universal primer pairs R16mF2/R16mR1 and R16F2n/R16R2. Phylogenetic analysis using the 16 S rRNA gene sequence suggested that the phytoplasma associated with the yellow leaf symptoms belongs to a novel subclade in the aster yellows(AY) group(16SrI group). Virtual and actual restriction fragment length polymorphism(RFLP) analysis of the 16 S rRNA gene fragment revealed that the phytoplasma was distinguishable from all existing 19 subgroups in the AY group(16SrI) by four restriction sites, Hinf I, Mse I, Sau3 A I and Taq I. The similarity coefficients of comparing the RFLP pattern of the 16 S rRNA gene fragment of this phytoplasma to each of the 19 reported subgroups ranged from 0.73 to 0.87, which indicates the phytoplasma associated with the cherry plum yellow leaf(CPYL) symptoms is probably a distinct and novel subgroup lineage in the AY group(16SrI). In addition, the novel phytoplasma was experimentally transmitted to periwinkle(Catharanthus roseus) plants from the tree with CPYL symptoms and then back to a healthy 1-yr-old cherry plum tree via dodder(Cuscuta odorata) connections.展开更多
水稻剑叶性状与产量息息相关,也是水稻遗传学和分子生物学研究的热点之一。剖析水稻剑叶长度的遗传机理,为培育理想株型新品种、提高水稻产量奠定基础。以长剑叶的非洲长雄蕊野生稻(Oryza longistaminata A. Chev.&Roehr.)为父本、...水稻剑叶性状与产量息息相关,也是水稻遗传学和分子生物学研究的热点之一。剖析水稻剑叶长度的遗传机理,为培育理想株型新品种、提高水稻产量奠定基础。以长剑叶的非洲长雄蕊野生稻(Oryza longistaminata A. Chev.&Roehr.)为父本、短剑叶的粳稻Balilla为母本构建F2分离群体。统计2015-2017年近3年的F2群体的表型数据和基因型数据,对剑叶长度性状进行了遗传效应分析和QTL定位。一共检测到10个控制剑叶长度的QTL位点,分布在水稻的第3、4、5、7、8、9、11和12号染色体上。其中位于第9号染色体上的q FLL9-1是群体中控制水稻剑叶长度的主效位点,还鉴定到了两个新位点qFLL4-1和qFLL11-1。针对主效位点q FLL9-1构建了高世代回交群体BC6F2,验证了qFLL9-1在群体中发挥重要的效应。本研究鉴定到qFLL4-1和qFLL11-1两个调控剑叶长度的新QTL位点,验证了1个调控水稻剑叶长度的主效QTL qFLL9-1,研究结果为水稻剑叶长度QTL的精细定位奠定了基础,有利于长雄蕊野生稻种质资源的进一步开发与利用。展开更多
基金Hainan Science and Technology Project(ZDYF2020229ZDKJ2021010)Scientific Research Program of Hainan Key Laboratory of Vegetable Biology and Hainan Key Laboratory for Quality Regulation of Tropical Horticultural Crops(HNZDSYS(YY)-03)。
文摘[Objectives]To explore the genetic mechanism that leaf length and leaf width in bitter gourd has realistic guiding significance for formulating breeding strategy.[Methods]In this paper,the cross was made between CN19-1 and Thai4-6 and an F2segregation population was constructed.The genetic characteristics of leaf length and leaf width were analyzed by employing the major gene plus polygene mixed genetic model.[Results]The data analysis results demonstrated that the leaf length and leaf width of the F_(2) segregation population showed continuous distribution.The optimum model for leaf length genetic analysis was A-1,the additive effect value of the major gene was 3.1766,the dominant effect value was-3.1766,and the heritability was 74.51%.The optimum model for leaf width genetic analysis was B-1.The additive effect values of 2 pairs of major genes controlling the leaf width were 3.1917 and 0.9623,respectively.The dominant effect values were-1.3135 and-0.3463,respectively.The additive×additive interaction effect was-0.3591,the additive×dominant interaction effect was-0.2570,the dominant×additive interaction effect was 1.9916,the dominant×dominant interaction effect was 1.9686.The heritability of major genes was 96.67%.[Conclusions]This study is expected to provide a theoretical basis for the breeding of bitter gourd.
文摘The present study was conducted to identify quantitative trait loci (QTLs) for leaf size traits in IR64 introgression lines (INLs). For this purpose, selected F2 populations derived from crosses between recurrent parent IR64 and its derived INLs, unique for leaf length and leaf width, were used to confirm QTLs. A total of eight QTLs, mapped on three chromosomes, were identified for the four leaf size traits in six F2 populations. A QTL for leaf length, qLLnpt-1, in HKL69 was identified around simple sequence repeat (SSR) marker RM3709 on chromosome 1. Two QTLs for flag leaf length, qFLLnpt-2 and qFLLnpt-4, in HFG39 were indentified on chromosomes 2 and 4, respectively. For flag leaf width, a QTL, qFLWnpt-4, in HFG39 was identified around RM17483 on chromosome 4. While another QTL for flag leaf width, qFLWnpt-1, in HFG27 was identified around RM3252 on chromosome 1. A QTL for leaf width, qLWnpt-2, in HKL75 was identified around RM7451 on chromosome 2. For leaf width, two QTLs, qLWnpt-4a, qLWnpt-4b, in HKL48 and HKL99 were identified around RM7208 and RM6909, respectively on chromosome 4. Results from this study suggest the possibilities to use marker-assisted selection and pyramiding these QTLs to improve rice water productivity.
基金financially supported by the National Natural Science Foundation of China(No.31600587)
文摘Convenient and effective methods to determine seasonal changes in individual leaf area (LA) and leaf mass (LM) of plants are useful in research on plant physiology and forest ecology. However, practical methods for estimating LA and LM of elm (Ulmus japonica) leaves in different periods have rarely been reported. We collected sample elm leaves in June, July and September. Then, we developed allometric models relating LA, LM and leaf parameters, such as leaf length (L) and width (W) or the product of L and W (LW). Our objective was to find optimal allometric models for conveniently and effectively estimating LA and LM of elm leaves in different periods. LA and LM were significantly correlated with leaf parameters (P < 0.05), and allometric models with LW as an independent variable were best for estimating LA and LM in each period. A linear model was separately developed to predict LA of elm leaves in June, July and September, and it yielded high accuracies of 93, 96 and 96%, respectively. Similarly, a specific allometric model for predicting LM was developed separately in three periods, and the optimal model form in both June and July was a power model, but the linear model was optimal for September. The accuracies of the allometric models in predicting LM were 88, 83 and 84% for June, July and September, respectively. The error caused by ignoring seasonal variation of allometric models in predicting LA and LM in the three periods were 1-4 and 16-59%, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.31371571)the National High Technology Research and Development Program of China(863 Program)(Grant No.2014AA10A605)the Fundamental Research Funds for the Central Universities(Grant No.2662017JC001)
文摘Dry seeding is a resource-saving rice establishment method. With an equivalent yield, dry seeded flooded rice (DSR) has been considered as a replacement for traditional transplanted flooded rice (TFR). However, the differences in leaf and root senescence during grain filling between DSR and TFR were seldom identified. In this study, the root length, root tip number and leaf senescence of rice varieties Huanghuazhan and Yangliangyou 6 during ripening were compared between DSR and TFR. Results showed that top three leaves in DSR had the characteristics of relatively lower SPAD value, lower N content and premature leaf senescence. In addition, both the total root length and total root tip number of DSR were significantly lower than those of TFR. In conclusion, premature and quick leaf senescence was related with inadequate root length and root tip number during ripening, which might result from the deficiency of nitrogen supply in DSR. Techniques on improving leaf nitrogen status and delaying the leaf senescence during grain-filling in DSR should be developed in future researches.
文摘Chlorophyll fluorescence is a well established technique to rapidly and non-invasively determine photosynthesis parameters in plant leaves. It can be used in both laboratory and field settings, and frequently dark-adaptation of a leaf sample is called for. In the field, this can be accomplished on flat leaves using standard leaf clips supplied by instrument manufacturers. However, not all plant leaves are flat, many are cylindrical or otherwise three-dimensional in shape. The standard leaf clip does not close fully on three-dimensional leaves, therefore, does not allow the sample to be properly dark adapted in the field. A new leaf “wand” was developed that can be slipped over an entire cylindrical leaf or culm of rushes and sedges for both light- and dark-adapted measurements. This new leaf wand is compared to the standard leaf clip (DLC-8) using a Walz mini-PAM on Juncus roemerianus(Black needlerush). Results indicate that dark-adapted yield measurements are not significantly different between leaf clips, while light-adapted yields are higher with the leaf wand. The potential sources of difference in the optical path of the excitation light and fluorescence return are discussed and compared between leaf clips. Construction of specialized leaf wands should be considered for any leaves are not flat and therefore that do not fit the standard leaf clip for complete dark-adaptation under field conditions.
基金supported by the 111 Project from the Ministry of Education of China (B07049)the PhD Program Foundation from the Ministry of Education of China (20100204110004)the National Natural Science Foundation of China (31371913)
文摘A novel phytoplasma was detected in a cherry plum(Prunus cerasifera Ehrh) tree that mainly showed yellow leaf symptom. The tree was growing in an orchard located in Yangling District, Shaanxi Province, China. The leaves started as chlorotic and yellowing along leaf minor veins and leaf tips. Chlorosis rapidly developed to inter-veinal areas with the whole leaf becoming pale yellow in about 1-4 wk. Large numbers of phytoplasma-like bodies(PLBs) were seen under transmission electron microscopy. The majority of the PLBs was spherical or elliptical vesicles, with diameters in range of 0.1-0.6 μm, and distributed in the phloem cells of the infected tissues. A 1 246-bp 16 S ribosomal RNA(rRNA) gene fragment was amplified from DNA samples extracted from the yellow leaf tissues using two phytoplasma universal primer pairs R16mF2/R16mR1 and R16F2n/R16R2. Phylogenetic analysis using the 16 S rRNA gene sequence suggested that the phytoplasma associated with the yellow leaf symptoms belongs to a novel subclade in the aster yellows(AY) group(16SrI group). Virtual and actual restriction fragment length polymorphism(RFLP) analysis of the 16 S rRNA gene fragment revealed that the phytoplasma was distinguishable from all existing 19 subgroups in the AY group(16SrI) by four restriction sites, Hinf I, Mse I, Sau3 A I and Taq I. The similarity coefficients of comparing the RFLP pattern of the 16 S rRNA gene fragment of this phytoplasma to each of the 19 reported subgroups ranged from 0.73 to 0.87, which indicates the phytoplasma associated with the cherry plum yellow leaf(CPYL) symptoms is probably a distinct and novel subgroup lineage in the AY group(16SrI). In addition, the novel phytoplasma was experimentally transmitted to periwinkle(Catharanthus roseus) plants from the tree with CPYL symptoms and then back to a healthy 1-yr-old cherry plum tree via dodder(Cuscuta odorata) connections.