[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluati...[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluation. [Method] Seven different sugarcane varieties were studied at the seedling stage under drought stress,and the changes of leaf water and chlorophyll fluorescence parameters under stress conditions were detected. [Result] leaf water potential,leaf relative water content and soil relative water content showed a certain amount of internal relationship,the sugarcane varieties that had more tolerant to drought had higher utilization rate of soil water; the correlation analysis and factor analysis suggested that the survival rate at seedling stage under drought stress,Fv/Fm,leaf water potential and relative water content could be used as drought resistance evaluation indicators. [Conclusion] As a relatively independent influencing factor,water potential had dominating effect on drought resistance,and the reliability of Fv/Fm as drought resistance evaluation indicator had been verified.展开更多
The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a g...The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.展开更多
A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by control...A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by controlling irrigation and using a mobile rain shelter in a neutral loam, meadow soil to determine the effects on leaf water status, membrane permeability and enzymatic antioxidant system for different growth stages. The results indicated that drought stress relied on drought intensity and duration, with more severe drought stress creating more serious effects on maize. Compared with well-watered conditions, during the silking and blister stages moderate stress did not significantly change the relative water content (RWC) and did change significantly the relative conductivity (RC) (P < 0.05) of the leaves; however, severe stress did significantly decrease (P < 0.01) the leaf RWC and increase (P < 0.01) membrane permeability (leaf relative conductivity). Furthermore, under severe drought stress antioxidant enzyme activities declined significantly (P < 0.01) in later stages, namely for superoxide dismutase (SOD) the tasseling and blister stages, for peroxidase (POD) the milk stage, and for catalase (CAT) during the tasseling, blister, and milk stages. Meanwhile, membrane lipid peroxidation (measured as malondialdehyde content) significantly increased (P < 0.01) in all stages.展开更多
Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency ...Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency (WUE) and physiological traits (photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, etc.) of 29 wheat cultivars. The results showed that photosynthesis rate, stomatal conductance, and transpiration rate were the most important leaf WUE parameters under drought condition. Based on the results of statistical analyses, principal component analysis could be the most suitable method to ascertain the relationship between leaf WUE and relative physiological traits. It is reasonable to assume that high leaf WUE wheat could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate, and stomatal conductance under dry area.展开更多
Waterlogging is becoming an obvious constraint on food production due to the frequent occurrence of extremely high-level rainfall events.Leaf water content(LWC)is an important waterlogging indicator,and hyperspectral ...Waterlogging is becoming an obvious constraint on food production due to the frequent occurrence of extremely high-level rainfall events.Leaf water content(LWC)is an important waterlogging indicator,and hyperspectral remote sensing provides a non-destructive,real-time and reliable method to determine LWC.Thus,based on a pot experiment,winter wheat was subjected to different gradients of waterlogging stress at the jointing stage.Leaf hyperspectral data and LWC were collected every 7 days after waterlogging treatment until the winter wheat was mature.Combined with methods such as vegetation index construction,correlation analysis,regression analysis,BP neural network(BPNN),etc.,we found that the effect of waterlogging stress on LWC had the characteristics of hysteresis and all waterlogging stress led to the decrease of LWC.LWC decreased faster under severe stress than under slight stress,but the effect of long-term slight stress was greater than that of short-term severe stress.The sensitive spectral bands of LWC were located in the visible(VIS,400–780 nm)and short-wave infrared(SWIR,1400–2500 nm)regions.The BPNN Model with the original spectrum at 648 nm,the first derivative spectrum at 500 nm,the red edge position(λr),the new vegetation index RVI(437,466),NDVI(437,466)and NDVI´(747,1956)as independent variables was the best model for inverting the LWC of waterlogging in winter wheat(modeling set:R^(2)=0.889,RMSE=0.138;validation set:R^(2)=0.891,RMSE=0.518).These results have important theoretical significance and practical application value for the precise control of waterlogging stress.展开更多
Seedlings of drought-tolerance rice varieties Han 501and Han A03,and the drought sensitive varietiesNanjing 11 and Yanjing 2 were raised in a paddyfield and transplanted into pots at the age of 8leaves.Water stress st...Seedlings of drought-tolerance rice varieties Han 501and Han A03,and the drought sensitive varietiesNanjing 11 and Yanjing 2 were raised in a paddyfield and transplanted into pots at the age of 8leaves.Water stress started at the tillering stage byholding water from 0 MPa of the soil water potentialin pots till the leaves showed seriously wilting.展开更多
Differences in transpiration and leaf water potential (LWP) in relation to cassava yield were investigated along inland valley toposequence in a 4×4 Latin square design. The landrace with the highest transpirat...Differences in transpiration and leaf water potential (LWP) in relation to cassava yield were investigated along inland valley toposequence in a 4×4 Latin square design. The landrace with the highest transpiration rate and lowest LWP yielded the lowest, while TMS 91/02324 and TMS 91/02327 with intermediate rate and highest LWP yielded the highest, indicating that high transpiration rate associated with low LWP reduced yield. Transpiration was lower in the fringe with deeper water table than valley bottom at deep water table site, while at shallow water table, it was higher in the fringe than valley bottom, suggesting that drought and excess moisture reduced transpiration. LWP and water table depth correlated negatively indicating that shallow water table reduced transpiration by reducing LWP. Transpiration increased and LWP decreased as radiation, leaf temperature and vapour pressure deficit increased and differences in these microclimatic conditions caused differences in the two processes between sites, years and time of day. Under mild water stress, transpiration and LWP were higher in the afternoon than the morning, but the reverse occurred under severe stress. TMS 91/02324 and TMS 91/02327 had the highest LWP under severe stress, indicating their higher drought tolerance than the other cultivars.展开更多
The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in ari...The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in arid and semi-arid regions that have poor water management measures. Leaf water potential(Ψ) is a physiological parameter that can be used to identify drought resistance in various species. Indeed, Ψ is one of the most important properties of a plant that can be measured using a pressure chamber. Drought avoiding or drought resistant species have a lower Ψ than plants that use normal or high levels of water. To determine drought resistance of species that are suitable for afforestation in arid urban regions, we evaluated twenty woody species in the Isfahan City, central Iran. The experimental design was random split-split plots with five replications. The species were planted outdoor in plastic pots and then subjected to treatments that consisted of two soil types and five drip irrigation regimes. To evaluate the resistance of each species to drought, we used the Ψ and the number of survived plants to obtain the drought resistance index(DRI). Then, cluster analysis, dendrogram, and similarity index were used to group the species using DRI. Result indicates that the evaluated species were classified into five groups:(1) high water consuming species(DRI>–60 MPa);(2) above normal water consuming species(–60 MPa≥DRI>–90 MPa);(3) normal water consuming species(–90 MPa≥DRI>–120 MPa);(4) semi-drought resistant species(–120 MPa≥DRI>–150 MPa);and(5) drought resistant species(DRI≤–150 MPa). According to the DRI, Salix babylonica L., Populus alba L., and P. nigra L. are high water consuming species, Platanus orientalis L. and Albizia julibrissin Benth are normal water consuming species, and Quercus infectoria Oliv. and Olea europaea L. can be considered as drought resistant species.展开更多
Two tolerant (BB24 and BB43) and two susceptible (BARI busbean-2 and BB04) genotypes of common bean (Phaseolus vulgaris L.) were evaluated for their water status and its relationship with reproductive responses under ...Two tolerant (BB24 and BB43) and two susceptible (BARI busbean-2 and BB04) genotypes of common bean (Phaseolus vulgaris L.) were evaluated for their water status and its relationship with reproductive responses under continuous water stress (50% field capacity) and control (80% field capacity) conditions in a net house covered with polyethylene sheet at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh. Under water stress condition, the susceptible genotype namely BB04 exhibited more negative leaf water potential (LWP) which was followed by that of BARI bushbean-2 in all the time of the day except at noon. The tolerant genotype namely BB24 exhibited less negative LWP at noon. The tolerant genotypes maintained higher relative water content (WRC) than the susceptible ones from dawn to dusk. The relationship between RWC and LWP was examined separately for four genotypes under water stress condition. The genotype BB24 showed a smaller decrease in RWC with more negative LWP than BB04. Water stress reduced pod setting ratio. The relationship between the leaf water status and reproductive responses showed that the genotype with a little reduction in mid-day drop of RWC or with high mid-day RWC displayed a high pod setting ratio.展开更多
Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sens...Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sensitivity to vapour pressure deficit(VPD)in mangroves,and its co-ordination with stomatal morphology and leaf hydraulic traits.We measured the stomatal response to a step increase in VPD in situ,stomatal anatomy,leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size.We aimed to answer two questions:(1)Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves?with a consideration of possible influence of genome size on stomatal morphology;and(2)do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves?We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits.Smaller,denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae,and stomata size negatively and vein density positively correlated with genome size.Less negative leaf osmotic pressure at the full turgor(πo)was related to higher operating steady-state stomatal conductance(gs);and a higher leaf capacitance(Cleaf)and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD.In addition,stomatal responsiveness to VPD was indirectly affected by leaf morphological traits,which were affected by site salinity and consequently leaf water status.Our results demonstrate that mangroves display a unique relationship between genome size,stomatal size and vein packing,and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology.Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.展开更多
The water content in vegetative leaves is an important indicator to plant science.It reveals the physiological status of plants and provides valuable information in irrigation management.Terahertz(THz)as a state-of-th...The water content in vegetative leaves is an important indicator to plant science.It reveals the physiological status of plants and provides valuable information in irrigation management.Terahertz(THz)as a state-of-the-art technology shows great potential in measuring and monitoring the water status in plant leaves.This paper reviewed the theoretical models for calculating water content in the plant leaves,the methods for eliminating the scattering loss caused by the surface roughness of leaf,the applications of THz spectroscopy and THz imaging for monitoring leaf water content and describing leaf water distribution.The survey of the researches presents the considerable advantages of this emerging and promising THz technology in agriculture.展开更多
Leaf water content(LWC)of crops is a suitable parameter for evaluation of plant water status and arbuscular mycorrhizal effect on the host plant under drought stress.Remote sensing technology provides an effective ave...Leaf water content(LWC)of crops is a suitable parameter for evaluation of plant water status and arbuscular mycorrhizal effect on the host plant under drought stress.Remote sensing technology provides an effective avenue to estimate LWC in crops.However,few LWC retrieval models have been developed specifically for the arbuscular mycorrhizal inoculated crops.In this study,soybean with inoculation and non-inoculation treatments were planted under the severe drought,moderate drought and normal irrigation levels.The LWC changes under different treatments at the 30 th,45 th and 64 th day after the inoculation were investigated,and the spectral response characteristics of inoculated and non-inoculated soybean leaves under the three drought stresses were analyzed.Five types of spectral variables/indices including:raw spectral reflectance(R),continuum-removed spectral reflectance(R C),difference vegetation index(DVI),normalized difference vegetation index(NDVI)and ratio vegetation index(RVI)were applied to determine the best estimator of LWC.The results indicate that LWC decreased as the aggravating of drought stress levels.However,LWC in inoculated leaves was higher than that in the counterparts under the same drought stress level,and the values of raw reflectance measured at inoculated leaves were lower than the non-inoculated leaves,especially around 1900 nm and 1410 nm.These water spectral features were more evident in the corresponding continuum-removed spectral reflectance.The newly proposed DVI C(2280,1900)index,derived from the continuum-removed spectral reflectance at 2280 nm and the raw spectral reflectance at 1900 nm in DVI type of index,was the most robust for soybean LWC assessment,with R 2 value of 0.72(p<0.01)and root mean square error(RMSE)and mean absolute error(MAE)of 2.12%and 1.75%,respectively.This study provides a means to monitor the mycorrhizal effect on drought-induced crops indirectly and non-destructively.展开更多
Canopy temperature (CT), leaf water potential (LWP) and spikelet fertility (SF) of a set of RILs (F9) from the cross between Zhenshan97B and IRAT109 were investi- gated under two soil moisture regimes in a drought scr...Canopy temperature (CT), leaf water potential (LWP) and spikelet fertility (SF) of a set of RILs (F9) from the cross between Zhenshan97B and IRAT109 were investi- gated under two soil moisture regimes in a drought screen facility. In water stress condition, CT was negatively corre- lated with SF (r = ?0.2867) and LWP (r = ?0.2740), and LWP was positively associated with SF (r = 0.1696). These results indicated that the plant with high drought tolerant ability could maintain higher LWP and lower CT, leading to higher SF. A total of 44 main effect QTLs were associated with CT, LWP and SF. The accumulated contributionsof QTLs forCT, LWP and SF were 87.85%, 15.06%, 79.46% under well water condition and 72.61%, 87.68%, 33.29% under stress condi- tion, respectively. Totally 45 pairs of digenic interactions were detected. The accumulated contribution of digenic epistasis on CT, LWP and SF were 55.69%, 47.15%, 48.15% under well water condition and 53.44%, 57.94%, 54.62% under water stress condition. Compared with other drought tolerance QTL mapping researches in rice, 19 main effect QTLs were found to be located at the same or closely con- joint regions.展开更多
Among all fruit crops of horticultural importance, grapevines (Vitis vinifera L.) stand out as the most drought tolerant crop species whose tolerance is credited to their proficiency to recover from water stress in bo...Among all fruit crops of horticultural importance, grapevines (Vitis vinifera L.) stand out as the most drought tolerant crop species whose tolerance is credited to their proficiency to recover from water stress in both the natural and vineyard growing conditions. However, information on the recovery responses is relatively scant. Studies were conducted to address this issue using potted vines of the grapevine cultivar, Cabernet Sauvignon, which was subjected to water stress and along with anatomical and ultrastructural characterizations, physiological status was assessed in healthy and water stressed vines, and following recovery via rewatering from the water stressed vines. Water stress induced wilting of leaves, drooping of tendrils, and desiccation followed by abscission of shoot tip leaving behind a brown scar at the shoot apex. The wilted leaves accumulated ABA, which correspondingly reduced stomatal conductance and leaf water potential. Upon re-watering, both these parameters made a recovery with values similar to healthy leaves. Likewise, leaf anatomical features following rewatering resembled to that of healthy leaves. In clusters, water stress caused shriveling of preveraison (unripened) berries, which regained full turgor following water resupply, whereas the postveraison (ripening) berries in the same cluster remained unaffected as evidenced by the presence of viable mesocarp cells and epicuticular wax in the form of platelets. The study revealed that shoot tip with leaf primordia was most sensitive to water stress followed by fully expanded leaves and preveraison berries, whereas the postveraison berries remained unaffected. This information could be valuable to implementing irrigation strategies towards sustaining grape production in existing vineyards experiencing episodic droughts and targeted areas prone to drought.展开更多
In this study, we developed a computer program for automatic prediction of watering time point by considering the environmental factors such as solar radiation, air temperature and relative humidity based on the multi...In this study, we developed a computer program for automatic prediction of watering time point by considering the environmental factors such as solar radiation, air temperature and relative humidity based on the multiple linear regression equation of leaf area and Penman Method. The experiments were carried out for a year in two watering experimental plots, one of which was controlled by pF value, and the other by the computer program. After comparing the results of the two plots, the following findings were obtained. In the computer program plot, the observed and predicted values of both leaf area and evapotranspiration indicated significant correlation at the 1% level, which suggested that the computer program had high prediction accuracy. In addition, no significant difference was observed between the two experimental plots with respects to the plant height, plant diameter, leaf area, leaf number, fresh weight, and dry weight, which demonstrated that the plants in the computer program plot had normal growth. On the other hand, although the number of flower buds and flowering shoots showed higher values at the end of certain cultivations in the computer program plot than those in pF value plot, we proposed that it was due to the effect of cumulative daily solar radiation in the greenhouse, rather than the watering. Thus, we have reached the conclusion that the computer program for automatic prediction of watering time point developed by this study has high applicability in miniature pot rose production.展开更多
Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is availabl...Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the es- tablishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomata! movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD) experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance, which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf tem- peratures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further inves- tigation into the molecular mechanisms of the root to shoot signaling under water stress.展开更多
Field experiments were conducted in the Ebro Delta area (Spain), from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water manageme...Field experiments were conducted in the Ebro Delta area (Spain), from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water management systems and two different nitrogen fertilization times. The number of leaves on the main stems and their emergence time were periodically tagged. The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles. Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems. Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems. Final leaf number on the main stems was negatively related to plant density. A relationship between leaf appearance and thermal time was established with a strong nonlinear function. In direct-seeded rice, the length of the phyllochron increases exponentially in line with the advance of plant development. A general model, derived from 2-year experimental data, was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf. An exponential model can be used to predict leaf emergence in direct-seeded rice.展开更多
Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced g...Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced growth and productivity. In this study, it was found that there was a reduction in photochemical efficiency of photosystem II (PSII) in 6 native orchid species under high light (HL) and Bulbophyllum membranaceum under low light (LL). There was chronic photoinhibition in these 6 orchid species over a period of 3 months after transplanting onto the tree trunks without watering and fertilization, especially in Coelogynes mayeriana and Bulbophyllum membranaceum under both HL and LL. This chronic photoinhibition caused by sustained period of water deficit in their natural conditions was later reversed by natural re-watering conditions from higher rainfall. These results indicate that water deficit has a greater impact on photosynthetic light utilization efficiency than excess light. The present study also showed that after natural rewatering, relative water content (RWC) of leaves and pseudobulbs generally increased. During the natural re-watering, total leaf area also gradually increased and reached maximum expansion after 7 weeks under both HL and LL, with some exceptions due to leaf abscission or decline in total leaf area, possibly a strategy for water conservation.展开更多
The effect of water state of soil on eco-boundary over leaf surface was disscussed by takingPopulus davidiana as experimental material. The results show that to change soil water state by some methods was to adjust an...The effect of water state of soil on eco-boundary over leaf surface was disscussed by takingPopulus davidiana as experimental material. The results show that to change soil water state by some methods was to adjust and control the forming quality of eco-boundary in fact. The plant in good water condition must be accompanied by thinner eco-boundary. This eco-boundary is beneficial to exchange and flow of the substances between plant and environment.展开更多
The tree specie selection is the critical part in the process of vegetation restoration and reconstruction in arid and semi-arid areas.As a reliable indicator of drought resistance and water use characteristics of tre...The tree specie selection is the critical part in the process of vegetation restoration and reconstruction in arid and semi-arid areas.As a reliable indicator of drought resistance and water use characteristics of tree species,water use efficiency(WUE) has become a hotspot in the research on tree specie selection.This paper introduced the concept and correspondingly research method of leaf WUE and summarized the research progress of leaf WUE in terms of the variation in leaf WUE between species,positions in the canopy,and characteristics of temporal and spatial variation,its influence on environmental factors like illumination,moisture,temperature, CO<sub>2</sub> and O<sub>3</sub> concentrations.Furthermore,it put forward the problems currently existing in the research and prospected the trend of future research on leaf WUE.展开更多
基金Supported by Key Projects in the National Science &Technology Pillar Program (2007BAD30B05)Key Project of Science and Tech-nology Department of Guangxi Province of China (0782004-5)the Program for Postgraduates Research Innovattion in GX. Univer-sity (105930903049)~~
文摘[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluation. [Method] Seven different sugarcane varieties were studied at the seedling stage under drought stress,and the changes of leaf water and chlorophyll fluorescence parameters under stress conditions were detected. [Result] leaf water potential,leaf relative water content and soil relative water content showed a certain amount of internal relationship,the sugarcane varieties that had more tolerant to drought had higher utilization rate of soil water; the correlation analysis and factor analysis suggested that the survival rate at seedling stage under drought stress,Fv/Fm,leaf water potential and relative water content could be used as drought resistance evaluation indicators. [Conclusion] As a relatively independent influencing factor,water potential had dominating effect on drought resistance,and the reliability of Fv/Fm as drought resistance evaluation indicator had been verified.
文摘The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.
基金Project supported by the National Key Basic Research Support Foundation of China (No. G1999043407)the National Natural Science Foundation of China (No. 40231018)
文摘A simulation experiment on the responses of maize (Zea mays L.) from the third leaf stage to maturity for different soil water levels (well-watered, moderately stressed, and severely stressed) was conducted by controlling irrigation and using a mobile rain shelter in a neutral loam, meadow soil to determine the effects on leaf water status, membrane permeability and enzymatic antioxidant system for different growth stages. The results indicated that drought stress relied on drought intensity and duration, with more severe drought stress creating more serious effects on maize. Compared with well-watered conditions, during the silking and blister stages moderate stress did not significantly change the relative water content (RWC) and did change significantly the relative conductivity (RC) (P < 0.05) of the leaves; however, severe stress did significantly decrease (P < 0.01) the leaf RWC and increase (P < 0.01) membrane permeability (leaf relative conductivity). Furthermore, under severe drought stress antioxidant enzyme activities declined significantly (P < 0.01) in later stages, namely for superoxide dismutase (SOD) the tasseling and blister stages, for peroxidase (POD) the milk stage, and for catalase (CAT) during the tasseling, blister, and milk stages. Meanwhile, membrane lipid peroxidation (measured as malondialdehyde content) significantly increased (P < 0.01) in all stages.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BAD98B03)
文摘Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency (WUE) and physiological traits (photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, etc.) of 29 wheat cultivars. The results showed that photosynthesis rate, stomatal conductance, and transpiration rate were the most important leaf WUE parameters under drought condition. Based on the results of statistical analyses, principal component analysis could be the most suitable method to ascertain the relationship between leaf WUE and relative physiological traits. It is reasonable to assume that high leaf WUE wheat could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate, and stomatal conductance under dry area.
基金This work was supported by the National Key Research and Development Program of China(2016YFD0200600,2016YFD0200601)the Key Research and Development Program of Hebei Province,China(19227407D)+1 种基金the Central Public-interest Scientific Institution Basal Research Fund(JBYW-AII-2020-29,JBYW-AII-2020-30)the Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2020-AII).
文摘Waterlogging is becoming an obvious constraint on food production due to the frequent occurrence of extremely high-level rainfall events.Leaf water content(LWC)is an important waterlogging indicator,and hyperspectral remote sensing provides a non-destructive,real-time and reliable method to determine LWC.Thus,based on a pot experiment,winter wheat was subjected to different gradients of waterlogging stress at the jointing stage.Leaf hyperspectral data and LWC were collected every 7 days after waterlogging treatment until the winter wheat was mature.Combined with methods such as vegetation index construction,correlation analysis,regression analysis,BP neural network(BPNN),etc.,we found that the effect of waterlogging stress on LWC had the characteristics of hysteresis and all waterlogging stress led to the decrease of LWC.LWC decreased faster under severe stress than under slight stress,but the effect of long-term slight stress was greater than that of short-term severe stress.The sensitive spectral bands of LWC were located in the visible(VIS,400–780 nm)and short-wave infrared(SWIR,1400–2500 nm)regions.The BPNN Model with the original spectrum at 648 nm,the first derivative spectrum at 500 nm,the red edge position(λr),the new vegetation index RVI(437,466),NDVI(437,466)and NDVI´(747,1956)as independent variables was the best model for inverting the LWC of waterlogging in winter wheat(modeling set:R^(2)=0.889,RMSE=0.138;validation set:R^(2)=0.891,RMSE=0.518).These results have important theoretical significance and practical application value for the precise control of waterlogging stress.
文摘Seedlings of drought-tolerance rice varieties Han 501and Han A03,and the drought sensitive varietiesNanjing 11 and Yanjing 2 were raised in a paddyfield and transplanted into pots at the age of 8leaves.Water stress started at the tillering stage byholding water from 0 MPa of the soil water potentialin pots till the leaves showed seriously wilting.
文摘Differences in transpiration and leaf water potential (LWP) in relation to cassava yield were investigated along inland valley toposequence in a 4×4 Latin square design. The landrace with the highest transpiration rate and lowest LWP yielded the lowest, while TMS 91/02324 and TMS 91/02327 with intermediate rate and highest LWP yielded the highest, indicating that high transpiration rate associated with low LWP reduced yield. Transpiration was lower in the fringe with deeper water table than valley bottom at deep water table site, while at shallow water table, it was higher in the fringe than valley bottom, suggesting that drought and excess moisture reduced transpiration. LWP and water table depth correlated negatively indicating that shallow water table reduced transpiration by reducing LWP. Transpiration increased and LWP decreased as radiation, leaf temperature and vapour pressure deficit increased and differences in these microclimatic conditions caused differences in the two processes between sites, years and time of day. Under mild water stress, transpiration and LWP were higher in the afternoon than the morning, but the reverse occurred under severe stress. TMS 91/02324 and TMS 91/02327 had the highest LWP under severe stress, indicating their higher drought tolerance than the other cultivars.
文摘The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in arid and semi-arid regions that have poor water management measures. Leaf water potential(Ψ) is a physiological parameter that can be used to identify drought resistance in various species. Indeed, Ψ is one of the most important properties of a plant that can be measured using a pressure chamber. Drought avoiding or drought resistant species have a lower Ψ than plants that use normal or high levels of water. To determine drought resistance of species that are suitable for afforestation in arid urban regions, we evaluated twenty woody species in the Isfahan City, central Iran. The experimental design was random split-split plots with five replications. The species were planted outdoor in plastic pots and then subjected to treatments that consisted of two soil types and five drip irrigation regimes. To evaluate the resistance of each species to drought, we used the Ψ and the number of survived plants to obtain the drought resistance index(DRI). Then, cluster analysis, dendrogram, and similarity index were used to group the species using DRI. Result indicates that the evaluated species were classified into five groups:(1) high water consuming species(DRI>–60 MPa);(2) above normal water consuming species(–60 MPa≥DRI>–90 MPa);(3) normal water consuming species(–90 MPa≥DRI>–120 MPa);(4) semi-drought resistant species(–120 MPa≥DRI>–150 MPa);and(5) drought resistant species(DRI≤–150 MPa). According to the DRI, Salix babylonica L., Populus alba L., and P. nigra L. are high water consuming species, Platanus orientalis L. and Albizia julibrissin Benth are normal water consuming species, and Quercus infectoria Oliv. and Olea europaea L. can be considered as drought resistant species.
文摘Two tolerant (BB24 and BB43) and two susceptible (BARI busbean-2 and BB04) genotypes of common bean (Phaseolus vulgaris L.) were evaluated for their water status and its relationship with reproductive responses under continuous water stress (50% field capacity) and control (80% field capacity) conditions in a net house covered with polyethylene sheet at the Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh. Under water stress condition, the susceptible genotype namely BB04 exhibited more negative leaf water potential (LWP) which was followed by that of BARI bushbean-2 in all the time of the day except at noon. The tolerant genotype namely BB24 exhibited less negative LWP at noon. The tolerant genotypes maintained higher relative water content (WRC) than the susceptible ones from dawn to dusk. The relationship between RWC and LWP was examined separately for four genotypes under water stress condition. The genotype BB24 showed a smaller decrease in RWC with more negative LWP than BB04. Water stress reduced pod setting ratio. The relationship between the leaf water status and reproductive responses showed that the genotype with a little reduction in mid-day drop of RWC or with high mid-day RWC displayed a high pod setting ratio.
基金financially supported by a grant of the National Natural Science Foundation of China(31670406)the Bagui Fellow scholarship(C33600992001)of Guangxi Zhuang Autonomous Region to KFC.
文摘Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sensitivity to vapour pressure deficit(VPD)in mangroves,and its co-ordination with stomatal morphology and leaf hydraulic traits.We measured the stomatal response to a step increase in VPD in situ,stomatal anatomy,leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size.We aimed to answer two questions:(1)Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves?with a consideration of possible influence of genome size on stomatal morphology;and(2)do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves?We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits.Smaller,denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae,and stomata size negatively and vein density positively correlated with genome size.Less negative leaf osmotic pressure at the full turgor(πo)was related to higher operating steady-state stomatal conductance(gs);and a higher leaf capacitance(Cleaf)and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD.In addition,stomatal responsiveness to VPD was indirectly affected by leaf morphological traits,which were affected by site salinity and consequently leaf water status.Our results demonstrate that mangroves display a unique relationship between genome size,stomatal size and vein packing,and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology.Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.
基金This work was supported by the National Key Point Research and Invention Program of the Thirteenth(2016YFD0700304)the National Key Research&Development program of China(2016YFD0300606 and 2017YFD0700501).
文摘The water content in vegetative leaves is an important indicator to plant science.It reveals the physiological status of plants and provides valuable information in irrigation management.Terahertz(THz)as a state-of-the-art technology shows great potential in measuring and monitoring the water status in plant leaves.This paper reviewed the theoretical models for calculating water content in the plant leaves,the methods for eliminating the scattering loss caused by the surface roughness of leaf,the applications of THz spectroscopy and THz imaging for monitoring leaf water content and describing leaf water distribution.The survey of the researches presents the considerable advantages of this emerging and promising THz technology in agriculture.
基金This work was supported by National Key Research and Development Program of China(2016YFB0501501)National Natural Science Foundation of China(41901369)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13030402)The Innovation Program of Academy of Opto-Electronics(AOE),Chinese Academy of Science(CAS)(Y70B16A15Y).
文摘Leaf water content(LWC)of crops is a suitable parameter for evaluation of plant water status and arbuscular mycorrhizal effect on the host plant under drought stress.Remote sensing technology provides an effective avenue to estimate LWC in crops.However,few LWC retrieval models have been developed specifically for the arbuscular mycorrhizal inoculated crops.In this study,soybean with inoculation and non-inoculation treatments were planted under the severe drought,moderate drought and normal irrigation levels.The LWC changes under different treatments at the 30 th,45 th and 64 th day after the inoculation were investigated,and the spectral response characteristics of inoculated and non-inoculated soybean leaves under the three drought stresses were analyzed.Five types of spectral variables/indices including:raw spectral reflectance(R),continuum-removed spectral reflectance(R C),difference vegetation index(DVI),normalized difference vegetation index(NDVI)and ratio vegetation index(RVI)were applied to determine the best estimator of LWC.The results indicate that LWC decreased as the aggravating of drought stress levels.However,LWC in inoculated leaves was higher than that in the counterparts under the same drought stress level,and the values of raw reflectance measured at inoculated leaves were lower than the non-inoculated leaves,especially around 1900 nm and 1410 nm.These water spectral features were more evident in the corresponding continuum-removed spectral reflectance.The newly proposed DVI C(2280,1900)index,derived from the continuum-removed spectral reflectance at 2280 nm and the raw spectral reflectance at 1900 nm in DVI type of index,was the most robust for soybean LWC assessment,with R 2 value of 0.72(p<0.01)and root mean square error(RMSE)and mean absolute error(MAE)of 2.12%and 1.75%,respectively.This study provides a means to monitor the mycorrhizal effect on drought-induced crops indirectly and non-destructively.
基金This study was supported by the Hi-Technology Research and Development Program of China(Grant No.2003AA207010)the National Basic Research Program of China(Grant No.2004CB 117204)..
文摘Canopy temperature (CT), leaf water potential (LWP) and spikelet fertility (SF) of a set of RILs (F9) from the cross between Zhenshan97B and IRAT109 were investi- gated under two soil moisture regimes in a drought screen facility. In water stress condition, CT was negatively corre- lated with SF (r = ?0.2867) and LWP (r = ?0.2740), and LWP was positively associated with SF (r = 0.1696). These results indicated that the plant with high drought tolerant ability could maintain higher LWP and lower CT, leading to higher SF. A total of 44 main effect QTLs were associated with CT, LWP and SF. The accumulated contributionsof QTLs forCT, LWP and SF were 87.85%, 15.06%, 79.46% under well water condition and 72.61%, 87.68%, 33.29% under stress condi- tion, respectively. Totally 45 pairs of digenic interactions were detected. The accumulated contribution of digenic epistasis on CT, LWP and SF were 55.69%, 47.15%, 48.15% under well water condition and 53.44%, 57.94%, 54.62% under water stress condition. Compared with other drought tolerance QTL mapping researches in rice, 19 main effect QTLs were found to be located at the same or closely con- joint regions.
文摘Among all fruit crops of horticultural importance, grapevines (Vitis vinifera L.) stand out as the most drought tolerant crop species whose tolerance is credited to their proficiency to recover from water stress in both the natural and vineyard growing conditions. However, information on the recovery responses is relatively scant. Studies were conducted to address this issue using potted vines of the grapevine cultivar, Cabernet Sauvignon, which was subjected to water stress and along with anatomical and ultrastructural characterizations, physiological status was assessed in healthy and water stressed vines, and following recovery via rewatering from the water stressed vines. Water stress induced wilting of leaves, drooping of tendrils, and desiccation followed by abscission of shoot tip leaving behind a brown scar at the shoot apex. The wilted leaves accumulated ABA, which correspondingly reduced stomatal conductance and leaf water potential. Upon re-watering, both these parameters made a recovery with values similar to healthy leaves. Likewise, leaf anatomical features following rewatering resembled to that of healthy leaves. In clusters, water stress caused shriveling of preveraison (unripened) berries, which regained full turgor following water resupply, whereas the postveraison (ripening) berries in the same cluster remained unaffected as evidenced by the presence of viable mesocarp cells and epicuticular wax in the form of platelets. The study revealed that shoot tip with leaf primordia was most sensitive to water stress followed by fully expanded leaves and preveraison berries, whereas the postveraison berries remained unaffected. This information could be valuable to implementing irrigation strategies towards sustaining grape production in existing vineyards experiencing episodic droughts and targeted areas prone to drought.
基金supported by the Science Founda-tion of Guangxi Zhuang Autonomous Region, China(0832002)
文摘In this study, we developed a computer program for automatic prediction of watering time point by considering the environmental factors such as solar radiation, air temperature and relative humidity based on the multiple linear regression equation of leaf area and Penman Method. The experiments were carried out for a year in two watering experimental plots, one of which was controlled by pF value, and the other by the computer program. After comparing the results of the two plots, the following findings were obtained. In the computer program plot, the observed and predicted values of both leaf area and evapotranspiration indicated significant correlation at the 1% level, which suggested that the computer program had high prediction accuracy. In addition, no significant difference was observed between the two experimental plots with respects to the plant height, plant diameter, leaf area, leaf number, fresh weight, and dry weight, which demonstrated that the plants in the computer program plot had normal growth. On the other hand, although the number of flower buds and flowering shoots showed higher values at the end of certain cultivations in the computer program plot than those in pF value plot, we proposed that it was due to the effect of cumulative daily solar radiation in the greenhouse, rather than the watering. Thus, we have reached the conclusion that the computer program for automatic prediction of watering time point developed by this study has high applicability in miniature pot rose production.
文摘Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the es- tablishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomata! movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD) experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance, which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf tem- peratures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further inves- tigation into the molecular mechanisms of the root to shoot signaling under water stress.
基金supported by the IRTA (Institute for Food and Agricultural Research and Technology), Spain
文摘Field experiments were conducted in the Ebro Delta area (Spain), from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water management systems and two different nitrogen fertilization times. The number of leaves on the main stems and their emergence time were periodically tagged. The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles. Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems. Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems. Final leaf number on the main stems was negatively related to plant density. A relationship between leaf appearance and thermal time was established with a strong nonlinear function. In direct-seeded rice, the length of the phyllochron increases exponentially in line with the advance of plant development. A general model, derived from 2-year experimental data, was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf. An exponential model can be used to predict leaf emergence in direct-seeded rice.
文摘Native orchid species of Singapore in their natural conditions experience stress from high irradiance, high temperatures and periods of extended low rainfall, which impact orchid plant physiology and lead to reduced growth and productivity. In this study, it was found that there was a reduction in photochemical efficiency of photosystem II (PSII) in 6 native orchid species under high light (HL) and Bulbophyllum membranaceum under low light (LL). There was chronic photoinhibition in these 6 orchid species over a period of 3 months after transplanting onto the tree trunks without watering and fertilization, especially in Coelogynes mayeriana and Bulbophyllum membranaceum under both HL and LL. This chronic photoinhibition caused by sustained period of water deficit in their natural conditions was later reversed by natural re-watering conditions from higher rainfall. These results indicate that water deficit has a greater impact on photosynthetic light utilization efficiency than excess light. The present study also showed that after natural rewatering, relative water content (RWC) of leaves and pseudobulbs generally increased. During the natural re-watering, total leaf area also gradually increased and reached maximum expansion after 7 weeks under both HL and LL, with some exceptions due to leaf abscission or decline in total leaf area, possibly a strategy for water conservation.
文摘The effect of water state of soil on eco-boundary over leaf surface was disscussed by takingPopulus davidiana as experimental material. The results show that to change soil water state by some methods was to adjust and control the forming quality of eco-boundary in fact. The plant in good water condition must be accompanied by thinner eco-boundary. This eco-boundary is beneficial to exchange and flow of the substances between plant and environment.
文摘The tree specie selection is the critical part in the process of vegetation restoration and reconstruction in arid and semi-arid areas.As a reliable indicator of drought resistance and water use characteristics of tree species,water use efficiency(WUE) has become a hotspot in the research on tree specie selection.This paper introduced the concept and correspondingly research method of leaf WUE and summarized the research progress of leaf WUE in terms of the variation in leaf WUE between species,positions in the canopy,and characteristics of temporal and spatial variation,its influence on environmental factors like illumination,moisture,temperature, CO<sub>2</sub> and O<sub>3</sub> concentrations.Furthermore,it put forward the problems currently existing in the research and prospected the trend of future research on leaf WUE.