株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株...株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。展开更多
苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出...苗期作物三维结构的精准高效重建是获取表型信息的重要基础。传统的三维重建大多基于运动恢复结构-多视图立体视觉(Structure from motion and multi-view stereo,SFM-MVS)算法,计算成本高,难以满足快速获取表型参数的需求。本研究提出一种基于神经辐射场(Neural radiance fields,NeRF)的苗期作物三维建模和表型参数获取系统,利用手机获取不同视角下的RGB影像,通过NeRF算法完成三维模型的构建。在此基础上,利用点云库(Point cloud library,PCL)中的直线拟合和区域生长等算法自动分割植株,并采用距离最值遍历、圆拟合和三角面片化等算法实现了精准测量植株的株高、茎粗和叶面积等表型参数。为评估该方法的重建效率和表型参数测量精度,本研究分别选取辣椒、番茄、草莓和绿萝的苗期植株作为试验对象,对比NeRF算法与SFM-MVS算法的重建结果。结果表明,以SFM-MVS方法重建点云为基准,NeRF方法重建的各植株点云点对距离均方根误差仅为0.128~0.395 cm,两者重建质量较接近,但在重建速度方面,本文研究方法相比于SFM-MVS方法平均重建速度提高700%。此外,该方法提取辣椒苗株高、茎粗决定系数(R^(2))分别为0.971和0.907,均方根误差(RMSE)分别为0.86 cm和0.017 cm,对各苗期植株叶面积提取的R^(2)为0.909~0.935,RMSE为0.75~3.22 cm^(2),具有较高的测量精度。本研究提出的方法可以显著提高三维重建和表型参数获取效率,从而为作物育种选苗提供更为高效的技术手段。展开更多
移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一...移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。展开更多
【目的】叶面积指数(leaf area index,LAI)是表征作物长势、光合、蒸腾的重要指标。论文旨在研究不同生育期、多生育期无人机多光谱数据棉花LAI估测模型,明确不同生育期间棉花LAI估测模型变化规律,为实时掌握棉花长势并因地制宜进行田...【目的】叶面积指数(leaf area index,LAI)是表征作物长势、光合、蒸腾的重要指标。论文旨在研究不同生育期、多生育期无人机多光谱数据棉花LAI估测模型,明确不同生育期间棉花LAI估测模型变化规律,为实时掌握棉花长势并因地制宜进行田间科学管理提供依据。【方法】利用大疆精灵4多光谱无人机获取棉花现蕾期、初花期、结铃期、吐絮期多光谱图像和RGB图像。选用归一化差植被指数(NDVI)、绿度归一化差植被指数(GNDVI)、归一化差红边指数(NDRE)、叶片叶绿素指数(LCI)、优化的土壤调节植被指数(OSAVI)5种多光谱指数和修正红绿植被指数(MGRVI)、红绿植被指数(GRVI)、绿叶指数(GLA)、超红指数(EXR)、大气阻抗植被指数(VARI)5种颜色指数分别建立棉花各生育期及棉花生长多生育期数据集合,结合打孔法获取地面LAI实测数据,使用机器学习算法中偏最小二乘(PLSR)、岭回归(RR)、随机森林(RF)、支持向量机(SVM)、神经网络(BP)构建棉花LAI预测模型。【结果】覆膜棉花LAI随着生育期的变化呈现先增长后下降的趋势,现蕾期、初花期、结铃期内侧棉花叶面积指数均值均显著大于外侧(P<0.05);选择的指数在各时期彼此间均呈显著相关(P<0.05),总体而言,多光谱指数与颜色指数间的相关性随着生育期的进行而呈现下降趋势,选择的指数在各时期均与棉花LAI相关性显著(P<0.05),多光谱指数相关系数介于0.35—0.85,颜色指数相关系数介于0.49—0.71,相关系数绝对值较大的指数多为多光谱指数,颜色指数与棉花LAI的相关系数绝对值较小;估测模型性能结果显示棉花各生育期模型中多光谱指数优于颜色指数,且各指数模型预测性能随着生育期的变化呈现一定规律性,NDVI是预测棉花LAI的最优指数。从模型结果上看,RF模型和BP模型在各生育期下获得了较高的估计精度。初花期LAI反演模型精度最高,最优模型验证集R2为0.809,MAE为0.288,NRMSE为0.120。多生育期最优模型验证集R2为0.386,MAE为0.700,NRMSE为0.198。【结论】棉花内外侧LAI在现蕾期、初花期、结铃期存在显著差异。在各生育期中,RF和BP模型是预测棉花LAI较优模型。NDVI在各指数中表现最好,是预测棉花LAI的最优指数。多生育期模型效果较单生育期明显下降,最优指数为GNDVI,最优模型为BP。本研究中预测棉花LAI的最优窗口期是初花期。研究结果可为无人机遥感监测棉花LAI提供理论依据和技术支持。展开更多
文摘株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。
文摘移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。
文摘【目的】叶面积指数(leaf area index,LAI)是表征作物长势、光合、蒸腾的重要指标。论文旨在研究不同生育期、多生育期无人机多光谱数据棉花LAI估测模型,明确不同生育期间棉花LAI估测模型变化规律,为实时掌握棉花长势并因地制宜进行田间科学管理提供依据。【方法】利用大疆精灵4多光谱无人机获取棉花现蕾期、初花期、结铃期、吐絮期多光谱图像和RGB图像。选用归一化差植被指数(NDVI)、绿度归一化差植被指数(GNDVI)、归一化差红边指数(NDRE)、叶片叶绿素指数(LCI)、优化的土壤调节植被指数(OSAVI)5种多光谱指数和修正红绿植被指数(MGRVI)、红绿植被指数(GRVI)、绿叶指数(GLA)、超红指数(EXR)、大气阻抗植被指数(VARI)5种颜色指数分别建立棉花各生育期及棉花生长多生育期数据集合,结合打孔法获取地面LAI实测数据,使用机器学习算法中偏最小二乘(PLSR)、岭回归(RR)、随机森林(RF)、支持向量机(SVM)、神经网络(BP)构建棉花LAI预测模型。【结果】覆膜棉花LAI随着生育期的变化呈现先增长后下降的趋势,现蕾期、初花期、结铃期内侧棉花叶面积指数均值均显著大于外侧(P<0.05);选择的指数在各时期彼此间均呈显著相关(P<0.05),总体而言,多光谱指数与颜色指数间的相关性随着生育期的进行而呈现下降趋势,选择的指数在各时期均与棉花LAI相关性显著(P<0.05),多光谱指数相关系数介于0.35—0.85,颜色指数相关系数介于0.49—0.71,相关系数绝对值较大的指数多为多光谱指数,颜色指数与棉花LAI的相关系数绝对值较小;估测模型性能结果显示棉花各生育期模型中多光谱指数优于颜色指数,且各指数模型预测性能随着生育期的变化呈现一定规律性,NDVI是预测棉花LAI的最优指数。从模型结果上看,RF模型和BP模型在各生育期下获得了较高的估计精度。初花期LAI反演模型精度最高,最优模型验证集R2为0.809,MAE为0.288,NRMSE为0.120。多生育期最优模型验证集R2为0.386,MAE为0.700,NRMSE为0.198。【结论】棉花内外侧LAI在现蕾期、初花期、结铃期存在显著差异。在各生育期中,RF和BP模型是预测棉花LAI较优模型。NDVI在各指数中表现最好,是预测棉花LAI的最优指数。多生育期模型效果较单生育期明显下降,最优指数为GNDVI,最优模型为BP。本研究中预测棉花LAI的最优窗口期是初花期。研究结果可为无人机遥感监测棉花LAI提供理论依据和技术支持。