期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Electromagnetic Calculation and Plasma Leakage Rate Analysis of the Magnetically Confined Plasma Rocket
1
作者 倪志鹏 汪良斌 +3 位作者 陈治友 张勇 王福堂 李建刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第2期211-215,共5页
An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intens... An electromagnetic calculation and the parameters of the magnet system of the magnetically confined plasma rocket were established. By using ANSYS code, it was found that the leakage rate depends on the current intensity of the magnet and the change of the magnet position. 展开更多
关键词 magnetically confined plasma rocket plasma leakage rate electromagnetic calculation
下载PDF
Effect of Fluid-Structure Interaction on Sealed Flow Field and Leakage Rate Based on Computational Fluid Dynamics 被引量:3
2
作者 汤赫男 王世杰 赵晶 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第3期326-330,共5页
This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles a... This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles are analyzed synchronously using FLUENT software, and the effects of fluid-structure interaction on the performance of the labyrinth seal are revealed. The results indicate that with the growth of tooth profile angle, the leakage rate of labyrinth seal tends to decrease first, and then increase. The results of fluid-structure interaction analysis are close to those of actual engineering. The effect of fluid-structure interaction makes tiny deformation in calculation mesh of piston and cylinder structure, and the coupling interaction affects the performance of the labyrinth seal. 展开更多
关键词 reciprocating compressor labyrinth seal fluid-structure interaction sealed flow field leakage rate
原文传递
Leakage Prediction Method for Contacting Mechanical Seals with Parallel Faces 被引量:17
3
作者 SUN Jianjun WEI Long +1 位作者 FENG Xiu GU Boqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期7-15,共9页
Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the la... Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal. 展开更多
关键词 mechanical seal leakage rate fractal theory frictional wear accelerated test model
下载PDF
Leakage and Stiffness Characteristics of Bionic Cluster Spiral Groove Dry Gas Seal 被引量:3
4
作者 Jin-Bo Jiang Xu-Dong Peng +1 位作者 Ji-Yun Li Yuan Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期148-158,共11页
Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well so... Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well solved by optimization of geometrical parameters and molded line of spiral groove. A new type of bionic cluster spiral groove DGS(CS?DGS) is proved to have superior film stability than S?DGS at the condition of high?speed and low?pressure numerically. A bionic CS?DGS is experimentally investigated and compared with common S?DGS in order to provide evidence for theoretical study. The film thickness and leakage rate of both bionic spiral groove and common spiral groove DGS are measured and compared with each other and with theoretical values under different closing force at the condition of static pressure, high?speed and low?pressure, and the film stiffness and stiffness?leakage ratio of these two face seals are derived by the relationship between closing force and film thickness at the steady state. Experimental results agree well with the theory that the leakage and stiffness of bionic CS?DGS are superior to that of common S?DGS under the condition of high?speed and low?pressure, with the decreasing amplitude of 20% to 40% and the growth amplitude of 20%, respectively. The opening performance and stiffness characteristics of bionic CS?DGS are inferior to that of common S?DGS when rotation speed equals to 0 r/min. The proposed research provides a new method to measure the axis film stiffness of DGS, and validates the superior performance of bionic CS?DGS at the condition of high?speed and low?pressure experimentally. 展开更多
关键词 Bionic cluster spiral groove Film stiffness Dry gas seal leakage rate
下载PDF
INVESTIGATION INTO EFFECT OF SPRING PRESSURE ON PERFORMANCE OF BALANCED MECHANICAL SEALS 被引量:7
5
作者 SUN Jianjun GU Boqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期39-43,共5页
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak... The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals. 展开更多
关键词 Balanced mechanical seal Spring pressure leakage rate Friction characteristic Fractal geometry
下载PDF
CHARACTERISTCS OF FLUID FILM IN OPTIMIZED SPIRAL GROOVE MECHANICAL SEAL 被引量:8
6
作者 ZHOU Jianfeng GU Boqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期54-61,共8页
In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate... In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force. 展开更多
关键词 Mechanical seal Pressure distribution Optimal design Bearing force leakage rate
下载PDF
Vacuum System for HL-2A Tokamak
7
作者 曹曾 崔成和 +2 位作者 刘德权 蔡萧 高霄燕 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第1期2632-2636,共5页
The vacuum system for HL-2A was built in 2003. The test results indicated that this system is feasible. It consists of three main parts: a pumping system, a pumping divertor and a glow discharge cleaning (GDC) system.... The vacuum system for HL-2A was built in 2003. The test results indicated that this system is feasible. It consists of three main parts: a pumping system, a pumping divertor and a glow discharge cleaning (GDC) system. For the pumping system, there are three main functions: (1) evacuating the vacuum vessel thus to produce an ultra high vacuum, (2) removal of impurities released during baking and (3) pumping during GDC. The pumping divertor controls the particles at the plasma edge and the GDC system provides a clean wall conditioning. During the first campaign of physical trial experiment on HL-2A, the ultimate pressure reached 4.6 × 10-6 Pa, and the total leakage and outgassing rate in 12 hours was 1.8 × 10-5 Pa·m3/s, which is close to that of ASDEX. 展开更多
关键词 pumping system pumping divertor glow discharge cleaning system leakage & outgassing rate
下载PDF
Effect of hole arrangement patterns on the leakage and rotordynamic characteristics of the honeycomb seal 被引量:2
8
作者 Wanfu Zhang Chengjing Gu +2 位作者 Xingchen Yang Kexin Wu Chun Li 《Propulsion and Power Research》 SCIE 2022年第2期181-195,共15页
The honeycomb seal is a vital component to reduce the leakage flow and improvethe system stability for the turbomachines. In this work, a three-dimensional model is established for the interlaced hole honeycomb seal ... The honeycomb seal is a vital component to reduce the leakage flow and improvethe system stability for the turbomachines. In this work, a three-dimensional model is established for the interlaced hole honeycomb seal (IHHCS) and the non-interlaced hole honeycombseal (NIHHCS) to investigate its leakage and rotordynamic characteristics by adopting computational fluid dynamics (CFD). Results show that the hole arrangement patterns have littleimpact on the pressure drop and turbulence kinetic energy distribution for the seals, and theIHHCS possesses a slightly lower leakage flow rate than the NIHHCS. Moreover, the numericalresults also show that the NIHHCS possesses a better rotordynamic performance than theIHHCS at all investigated conditions. Both seals show a larger k and a lower Ceff with the increase of the positive preswirl ratios and rotational speeds, while the negative preswirl ratioswould reduce the k and improve the Ceff. The NIHHCS possesses a higher absolute value ofFt for all operating conditions, this could explain the distinction of Ceff for both seals atdifferent working conditions. 展开更多
关键词 Honeycomb seal Computational fluid dynamics(CFD) Hole arrangement patterns leakage flow rate Rotordynamic characteristics
原文传递
Performance test of the low-pressure thin window multi-wire chamber
9
作者 张俊伟 鲁辰桂 +5 位作者 段利敏 马龙 胡荣江 杨贺润 马朋 甘再国 《Chinese Physics C》 SCIE CAS CSCD 2014年第2期57-60,共4页
A flow gas low-pressure multi-wire proportional chamber(LPMWPC) with an active area of 180 mm× 80 mm has been developed for the flying time test of the recoil nuclei on super heavy nuclear experiments. The LPMW... A flow gas low-pressure multi-wire proportional chamber(LPMWPC) with an active area of 180 mm× 80 mm has been developed for the flying time test of the recoil nuclei on super heavy nuclear experiments. The LPMWPC detector can be operated in single as well as double step operational modes. In the case of double step operational mode with a high gas amplification factor, signals from α-particles reside well above the electronic noise. The gas leakage rate and time resolution obtained from the α239Pu source are shown and discussed at the condition of 3 mbar Isobutane gas. It was shown that the time resolution was better than 2.9 ns at the best work condition, and the detecting efciency was larger than 98% at the low energy α particles. So the LPMWPC is fit to measure the flying time in the super heavy nuclear fragments experiment. 展开更多
关键词 LPMWPC gas leakage rate time resolution detecting efciency
原文传递
Determination of the 5d6p 3F4-5d2 3F transition probabilities of Ba I
10
作者 仲嘉琪 余庚华 +1 位作者 王谨 詹明生 《Frontiers of physics》 SCIE CSCD 2012年第2期235-238,共4页
Whether the transitions between 6s5d 3D and 5d6p 3F can be used for laser cooling of barium heavily depends upon the transition probabilities of 5d6p 3F-5d2 3F. Taking the transition 6s5d 3D3-5d6p 3F4 as a scale, the ... Whether the transitions between 6s5d 3D and 5d6p 3F can be used for laser cooling of barium heavily depends upon the transition probabilities of 5d6p 3F-5d2 3F. Taking the transition 6s5d 3D3-5d6p 3F4 as a scale, the leakage rate of 5d6p 3Fa-5d2 3F was used to evaluate the transition probabilities. 706 nm laser pulses with different durations were applied to a barium atomic beam for 6s5d 3D3-5d2 3F4 optical pumping, and the remaining percentages in 6s5d 3D3 were measured. After exponential fitting, the transition probability of 5d6p 3F4-5d2 3F3,4 was determined to be 2.1(4) ~ 104 s-1, which is in agreement with theoretical calculations using the scaled Thomas-Fermi-Dirac method. 展开更多
关键词 laser cooling leakage rate transition probability scaled Thomas-Fermi-Dirac method
原文传递
Sealing Performance of Pressure-Adaptive Seal
11
作者 李元丰 王怡灵 +2 位作者 张万欣 刘冀念 马加炉 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第6期747-756,共10页
A pressure-adaptive seal is developed to meet the demands of quick assembling and disassembling for an individual protection equipment in aerospace.The analysis model,which reflects the main characteristics of the sea... A pressure-adaptive seal is developed to meet the demands of quick assembling and disassembling for an individual protection equipment in aerospace.The analysis model,which reflects the main characteristics of the seal structure,is built based on the finite element method and the Roth’s theory of rubber seal,and verified by the prototype test.The influences of precompression ratio,hardness of the sealing ring rubber,and friction coefficient on the sealing performance are investigated by variable parameter method.Results show that the model can describe the essential characteristics of the pressure-adaptive seal structure,which has good follow-up to the cavity pressure to achieve the purpose of pressure self-adaptive.The leakage rate correlates negatively with the precompression ratio of the sealing ring and the hardness of the sealing ring material,while is positively related to the friction coefficient between the sealing ring and the sealing edge.The maximum contact stress on sealing surface has negative correlation with the precompression ratio of the sealing ring,and positive correlation with the hardness of the seal ring material.The damage risk of the sealing ring increases with the increases of the precompression ratio of sealing ring,hardness of sealing ring material,and friction coefficient. 展开更多
关键词 pressure-adaptive seal contact stress leakage rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部