期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Chinese word segmentation with local and global context representation learning 被引量:2
1
作者 李岩 Zhang Yinghua +2 位作者 Huang Xiaoping Yin Xucheng Hao Hongwei 《High Technology Letters》 EI CAS 2015年第1期71-77,共7页
A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chin... A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chinese character learning model uses the semanties of loeal context and global context to learn the representation of Chinese characters. Then, Chinese word segmentation model is built by a neural network, while the segmentation model is trained with the eharaeter representations as its input features. Finally, experimental results show that Chinese charaeter representations can effectively learn the semantic information. Characters with similar semantics cluster together in the visualize space. Moreover, the proposed Chinese word segmentation model also achieves a pretty good improvement on precision, recall and f-measure. 展开更多
关键词 local and global context representation learning Chinese character representa- tion Chinese word segmentation
下载PDF
Multi-Label Learning Based on Transfer Learning and Label Correlation 被引量:2
2
作者 Kehua Yang Chaowei She +2 位作者 Wei Zhang Jiqing Yao Shaosong Long 《Computers, Materials & Continua》 SCIE EI 2019年第7期155-169,共15页
In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local... In recent years,multi-label learning has received a lot of attention.However,most of the existing methods only consider global label correlation or local label correlation.In fact,on the one hand,both global and local label correlations can appear in real-world situation at same time.On the other hand,we should not be limited to pairwise labels while ignoring the high-order label correlation.In this paper,we propose a novel and effective method called GLLCBN for multi-label learning.Firstly,we obtain the global label correlation by exploiting label semantic similarity.Then,we analyze the pairwise labels in the label space of the data set to acquire the local correlation.Next,we build the original version of the label dependency model by global and local label correlations.After that,we use graph theory,probability theory and Bayesian networks to eliminate redundant dependency structure in the initial version model,so as to get the optimal label dependent model.Finally,we obtain the feature extraction model by adjusting the Inception V3 model of convolution neural network and combine it with the GLLCBN model to achieve the multi-label learning.The experimental results show that our proposed model has better performance than other multi-label learning methods in performance evaluating. 展开更多
关键词 Bayesian networks multi-label learning global and local label correlations transfer learning
下载PDF
基于三分支对抗学习和补偿注意力的红外和可见光图像融合
3
作者 邸敬 任莉 +2 位作者 刘冀钊 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第5期510-521,共12页
针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力... 针对现有深度学习图像融合方法依赖卷积提取特征,并未考虑源图像全局特征,融合结果容易产生纹理模糊、对比度低等问题,本文提出一种基于三分支对抗学习和补偿注意力的红外和可见光图像融合方法。首先,生成器网络采用密集块和补偿注意力机制构建局部-全局三分支提取特征信息。然后,利用通道特征和空间特征变化构建补偿注意力机制提取全局信息,更进一步提取红外目标和可见光细节表征。其次,设计聚焦双对抗鉴别器,以确定融合结果和源图像之间的相似分布。最后,选用公开数据集TNO和RoadScene进行实验并与其他9种具有代表性的图像融合方法进行对比,本文提出的方法不仅获得纹理细节更清晰、对比度更好的融合结果,而且客观度量指标优于其他先进方法。 展开更多
关键词 红外可见光图像融合 局部-全局三分支 局部特征提取 补偿注意力机制 对抗学习 聚焦双对抗鉴别器
下载PDF
基于物体单视图的隐式曲面重建
4
作者 邢燕 牛赛虎 +1 位作者 洪沛霖 檀结庆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第5期642-648,共7页
基于隐式曲面的三维重建方法在保真度、灵活性和压缩能力方面提供了良好的权衡。文章利用隐式曲面网络学习物体形状的三维表面,首先利用视觉几何群(visual geometry group-16,VGG-16)网络从图像中提取全局特征,对建模空间中的每个采样点... 基于隐式曲面的三维重建方法在保真度、灵活性和压缩能力方面提供了良好的权衡。文章利用隐式曲面网络学习物体形状的三维表面,首先利用视觉几何群(visual geometry group-16,VGG-16)网络从图像中提取全局特征,对建模空间中的每个采样点从VGG-16网络中获取局部特征;其次对每个采样点利用多层感知器(multi-layer perceptron,MLP)进行位置编码得到点特征;然后将全局特征和局部特征分别与点特征串联起来送入2个解码器中,获得隐式场中采样点的符号距离函数(signed distance function,SDF)的大小与符号,并最终得到物体的隐式曲面。文中所提出的方法应用于ShapeNet数据集上进行三维对象重建任务,定性和定量评估均优于现有方法,特别是对于具有孔洞和薄结构的复杂拓扑物体。 展开更多
关键词 三维重建 全局特征 局部特征 深度学习 符号距离函数(SDF)
下载PDF
基于面部全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合的抑郁强度识别
5
作者 孙强 李正 何浪 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2249-2263,共15页
现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,... 现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,该文提出一种全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合(PLEGDF-FGLSCF)的抑郁强度识别深度模型。首先,设计了全局抑郁特征局部感知力增强(PLEGDF)模块,用于提取面部局部区域之间的语义相关性信息,促进不同局部区域与抑郁相关的信息之间的交互,从而增强局部抑郁特征驱动的全局抑郁特征表达力。然后,提出了全局-局部语义相关性特征融合(FGLSCF)模块,用于捕捉全局和局部语义信息之间的关联性,实现全局和局部抑郁特征之间的语义一致性描述。最后,在AVEC2013和AVEC2014数据集上,利用PLEGDF-FGLSCF模型获得的识别结果在均方根误差(RMSE)和平均绝对误差(MAE)指标上的值分别是7.75/5.96和7.49/5.99,优于大多数已有的基准模型,证实了该方法的合理性和有效性。 展开更多
关键词 抑郁强度 人脸图像 局部感知力增强 全局和局部特征融合 语义一致性
下载PDF
多视野精细分析下的弱监督目标定位算法
6
作者 张英俊 贾聪聪 谢斌红 《计算机工程与设计》 北大核心 2024年第6期1750-1756,共7页
针对多尺度目标定位精度较差,难以捕获完整目标边界的问题,设计一种多视野精细分析模块并融入通道与空间注意力机制抑制背景噪声的干扰,获取多尺度目标的高分辨率特征。利用随机特征选取模块获取特征图随机位置的组合,聚合多个位置图获... 针对多尺度目标定位精度较差,难以捕获完整目标边界的问题,设计一种多视野精细分析模块并融入通道与空间注意力机制抑制背景噪声的干扰,获取多尺度目标的高分辨率特征。利用随机特征选取模块获取特征图随机位置的组合,聚合多个位置图获取最具辨别性的位置及其它位置的信息,融合浅层生成的类激活图与聚合类激活图获取细粒度位置信息,捕获完整的目标边界。与现有的弱监督定位方法相比,在解决多尺度目标定位效果差和局部最优问题上具有一定的优势。 展开更多
关键词 弱监督学习 目标定位 多尺度特征融合 注意力机制 全局平均池化 类激活图 正则化
下载PDF
基于包络学习和分级结构一致性机制的不平衡集成算法
7
作者 李帆 张小恒 +1 位作者 李勇明 王品 《电子学报》 EI CAS CSCD 北大核心 2024年第3期751-761,共11页
集成方法是不平衡学习方法的重要分支,然而,现有不平衡集成方法均作用于原样本而没考虑样本的结构信息,因此其效能仍然有限.样本的结构信息包括局部和全局结构信息.为了解决上述问题,本文提出了一种基于深度样本包络网络(Deep Instance ... 集成方法是不平衡学习方法的重要分支,然而,现有不平衡集成方法均作用于原样本而没考虑样本的结构信息,因此其效能仍然有限.样本的结构信息包括局部和全局结构信息.为了解决上述问题,本文提出了一种基于深度样本包络网络(Deep Instance Envelope Network,DIEN)和分级结构一致性机制(Hierarchical Structure Consistency Mechanism,HSCM)的不平衡集成学习算法.该算法在考虑局部流形和全局结构信息的情况下,通过多层样本聚类,生成高质量的多层包络样本,从而实现类平衡化.首先,算法基于样本近邻拼接和模糊C均值聚类算法,设计DIEN来挖掘样本的结构信息,得到深度包络样本.然后,设计局部流形结构度量和全局结构分布度量来构建HSCM用于增强层间样本的分布一致性.接着,将DIEN和HSCM结合起来,构建出优化后的深度样本包络网络——DH(DIEN with HSCM).之后,将基分类器应用于包络样本.最后,设计bagging集成学习机制来融合基分类器的预测结果.文末组织了多组实验,采用了十多个公共数据集和有代表性的相关算法进行验证比较.实验结果表明,本文算法在AUC(Area Under Curve),F-measure等四个性能指标上显著最优. 展开更多
关键词 不平衡学习 包络学习 分级结构一致性机制 局部流形结构度量 全局结构分布度量
下载PDF
基于全局一致性增强的多偏好会话推荐模型
8
作者 吴江铭 张晓堃 +2 位作者 徐博 杨亮 林鸿飞 《模式识别与人工智能》 EI CSCD 北大核心 2024年第6期513-524,共12页
基于会话的推荐旨在根据一组匿名会话预测用户下一个可能交互的物品.现有的基于图神经网络的会话推荐模型对全局信息的利用不足.为此,文中提出基于全局一致性增强的多偏好会话推荐模型(Global Consistency Augmented Multi-preference S... 基于会话的推荐旨在根据一组匿名会话预测用户下一个可能交互的物品.现有的基于图神经网络的会话推荐模型对全局信息的利用不足.为此,文中提出基于全局一致性增强的多偏好会话推荐模型(Global Consistency Augmented Multi-preference Session-Based Recommendation Model,GCAM).首先,在利用全局信息时,通过最短路径搜索算法构建一致性全局图,捕捉强依赖的物品关系,过滤不可靠的物品关系,从而保证全局信息的一致性.然后,应用一种多偏好标签平滑策略,从历史会话中充分挖掘协同信息,对标签进行平滑化,拟合用户偏好的真实分布.在3个数据集上的大量实验表明GCAM的优越性. 展开更多
关键词 会话推荐 多偏好学习 自监督学习 全局一致性增强
下载PDF
融合全局和局部信息的铁谱图像自动对焦算法
9
作者 刘信良 张龙泉 +2 位作者 冷晟 王静秋 王晓雷 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第2期423-434,共12页
针对铁谱图像获取时人工对焦误差大、速度慢等问题,提出了一种融合全局信息和局部信息的铁谱图像自动对焦方法。此方法分为两个阶段:全局对焦阶段利用卷积神经网络(Convolutional Neural Networks,CNN)提取整幅图像的特征向量,并利用门... 针对铁谱图像获取时人工对焦误差大、速度慢等问题,提出了一种融合全局信息和局部信息的铁谱图像自动对焦方法。此方法分为两个阶段:全局对焦阶段利用卷积神经网络(Convolutional Neural Networks,CNN)提取整幅图像的特征向量,并利用门控循环单元(Gate Recurrent Unit,GRU)融合对焦过程提取的特征,预测当前全局离焦距离,起到粗对焦的作用;局部对焦阶段提取磨粒的特征向量,利用GRU融合当前特征与前一轮对焦提取的特征,并依据最厚磨粒信息,预测当前磨粒离焦距离,起到精对焦的作用。同时,为了提高对焦准确率,提出了结合拉普拉斯梯度的对焦方向判定法。实验结果表明,此算法在测试集上的对焦误差为2.51μm,当景深为2.0μm时对焦准确率为80.1%,平均对焦时间为0.771 s。本文提出的自动对焦方法具有较好的性能,为铁谱图像自动准确采集提供了技术支持。 展开更多
关键词 自动对焦 铁谱图像 全局信息 局部信息 深度学习 门控循环单元
下载PDF
基于持续学习的中医舌色苔色协同分类方法
10
作者 卓力 李艳萍 +5 位作者 孙亮亮 张辉 李晓光 张菁 杨洋 魏玮 《北京工业大学学报》 CAS CSCD 北大核心 2024年第9期1077-1088,共12页
中医(traditional Chinese medicine, TCM)舌诊客观化研究中需要分析的舌象特征很多,不同的舌象特征往往采用单独的方法进行分析,导致分析系统的整体实现复杂度大幅增加。为此,基于持续学习的思想,提出一种中医舌色苔色协同分类方法,该... 中医(traditional Chinese medicine, TCM)舌诊客观化研究中需要分析的舌象特征很多,不同的舌象特征往往采用单独的方法进行分析,导致分析系统的整体实现复杂度大幅增加。为此,基于持续学习的思想,提出一种中医舌色苔色协同分类方法,该方法将舌色分类作为旧任务,将苔色分类作为新任务,充分利用2个任务的相似性和相关性,仅通过一个网络结构就同时实现舌色和苔色的准确分类。首先,设计一种基于全局-局部混合注意力机制(global local hybrid attention, GLHA)的双分支网络结构,将网络高层语义特征与低层特征相融合,提升特征的表达能力;然后,提出基于正则化和回放相结合的持续学习策略,使得该网络在学习新任务知识的同时有效防止对旧任务知识的遗忘。在2个自建的中医舌象特征分析数据集上的实验结果表明,提出的协同分类方法可以获得与单个任务相当的分类性能,同时可以将2个分类任务的整体复杂度降低一半左右。其中,舌色分类准确率分别达到93.92%和92.97%,精确率分别达到93.69%和92.87%,召回率分别达到93.96%和93.16%;苔色分类准确率分别达到90.17%和90.26%,精确率分别达到90.05%和90.17%,召回率分别达到90.24%和90.29%。 展开更多
关键词 中医舌色苔色分类 协同分类 深度学习 持续学习 全局-局部混合注意力机制 机器视觉
下载PDF
基于全局与局部多尺度上下文的电表数据检测
11
作者 马天磊 符俊 +2 位作者 马琪 杨震 刘新浩 《应用光学》 CAS 北大核心 2024年第4期804-811,共8页
电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法... 电力系统中配电箱的电表数据检测为电力管理和安全运行提供了重要的数据支持。传统的人工电表数据读取方法效率低下且易出错,而现有深度学习方法因模型参数量大限制了模型的应用。针对上述问题,提出了一种轻量化鲁棒的实时电表检测方法。通过减少特征提取网络的层数和通道数,减少模型的参数量,实现网络的轻量化。在减少网络参数量的同时,为了保证网络的特征表达能力和拟合能力,引入全局上下文和局部多尺度上下文丰富目标特征表达。全局上下文关注电表数据在电表箱中的位置,局部多尺度上下文适应不同尺寸的电表数据。实验结果表明,所提网络在参数量更小的情况下,仍能获得比其他检测方法更高的准确率和更快的检测速度。 展开更多
关键词 电表数据检测 全局上下文 局部上下文 深度学习 注意力机制
下载PDF
改进麻雀搜索算法的轮式机器人路径规划
12
作者 陈旭东 杨光永 +1 位作者 徐天奇 蔡艳 《组合机床与自动化加工技术》 北大核心 2024年第9期50-56,共7页
针对传统麻雀搜索算法(sparrow search algorithm,SSA)在轮式机器人路径规划应用中易陷入局部最优使得规划路径较长以及算法后期容易陷入早熟等问题,提出一种改进麻雀搜索算法(improved sparrow search algorithm,ISSA)应用在轮式机器... 针对传统麻雀搜索算法(sparrow search algorithm,SSA)在轮式机器人路径规划应用中易陷入局部最优使得规划路径较长以及算法后期容易陷入早熟等问题,提出一种改进麻雀搜索算法(improved sparrow search algorithm,ISSA)应用在轮式机器人路径规划中。首先,在算法初期初始化种群时利用Logistic混沌提高初始种群的多样性;其次,将线性动态惯性权重调整方法引入到发现者位置更新中,使得算法的全局搜索能力以及收敛速度得以提升;然后,在跟随者位置更新方法中结合中垂线算法(midperpendicular algorithm,MA)使跟随者快速精准地向种群适应度最高的个体靠拢;最后,在算法后期结合最优爆炸粒子策略与反向学习策略在最优解附近产生扰动,防止算法后期陷入局部最优解。并且在机器人路径规划应用中将全局最优解再次进行局部搜索来提高机器人的路径规划能力。仿真结果表明,ISSA应用在路径规划中,其路径长度、寻优速度以及迭代次数方面均有显著提高。 展开更多
关键词 路径规划 Logistic混沌 中垂线算法 爆炸粒子 反向学习 全局最优解局部搜索
下载PDF
基于自适应全局定位算法的带钢表面缺陷检测
13
作者 王延舒 余建波 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1550-1564,共15页
针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题,提出了一种基于自适应全局定位网络(Adaptive global localization network,AGLNet)的深度学习缺陷检测算法.首先,引入一种残差网络(Residual network,ResN... 针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题,提出了一种基于自适应全局定位网络(Adaptive global localization network,AGLNet)的深度学习缺陷检测算法.首先,引入一种残差网络(Residual network,ResNet)与特征金字塔网络(Feature pyramid network,FPN)集成的特征提取结构,减少缺陷语义信息在层级传递间的消失;其次,提出基于TPE(Tree-structure Parzen estimation)的自适应树型候选框提取网络(Adaptive treestructure region proposal extraction network,AT-RPN),无需先验知识的积累,避免了人为调参的训练模式;最后,引入全局定位回归算法,以全局定位的模式在复杂的缺陷检测中实现缺陷更精确定位.本文实现一种快速、准确、更智能化、更适用于实际应用的热轧带钢表面缺陷的算法.实验结果表明,AGLNet在NEU-DET热轧带钢表面缺陷数据集上的检测速度保持在11.8帧/s,平均精度达到79.90%,优于目前其他深度学习带钢表面缺陷检测算法.另外,该算法还具备较强的泛化能力. 展开更多
关键词 表面缺陷检测 深度学习 特征金字塔网络 自适应树型候选框提取 全局定位
下载PDF
基于ViT-CNN混合网络的合成孔径雷达图像船舶分类
14
作者 邵然 毕晓君 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第8期1616-1623,共8页
为了解决视觉转换器模型缺乏多尺度与局部特征捕获能力,难以适应合成孔径雷达图像船舶分类任务的问题,本文提出一种混合网络模型用于合成孔径雷达图像船舶分类。利用分阶段下采样网络结构,解决了ViT无法捕获多尺度特征的问题。通过在Vi... 为了解决视觉转换器模型缺乏多尺度与局部特征捕获能力,难以适应合成孔径雷达图像船舶分类任务的问题,本文提出一种混合网络模型用于合成孔径雷达图像船舶分类。利用分阶段下采样网络结构,解决了ViT无法捕获多尺度特征的问题。通过在ViT模型的3个核心模块中融入卷积结构,设计了卷积标记嵌入、卷积参数共享注意力和局部前馈网络3个模块,使得网络能够同时捕获船舶图像的全局和局部特征,进一步增强了网络归纳偏置和特征提取能力。研究表明:本文所提模型在OpenSARShip和FUSAR-Ship2个通用合成孔径雷达船舶图像数据集上,分类准确率较最优方法分别提高了2.96%和4.18%,有效地提升了合成孔径雷达图像船舶分类性能。 展开更多
关键词 视觉转换器 卷积神经网络 SAR图像 深度学习 参数共享 局部特征 全局特征 船舶图像
下载PDF
基于全局与局部感知网络的超高清图像去雾方法
15
作者 郑卓然 魏绎汶 贾修一 《智能系统学报》 CSCD 北大核心 2024年第1期89-96,共8页
当前,为实现图像全局建模的目的,基于多层感知机(multi-layer perceptron,MLP)的模型通常需要将图像上的像素进行平铺,之后实施一个自注意力机制或“混合”增强方案以获得图像的长范围依赖。然而,这些方法通常消耗大量的计算资源来弥补... 当前,为实现图像全局建模的目的,基于多层感知机(multi-layer perceptron,MLP)的模型通常需要将图像上的像素进行平铺,之后实施一个自注意力机制或“混合”增强方案以获得图像的长范围依赖。然而,这些方法通常消耗大量的计算资源来弥补图像重建丢失的空间拓扑信息。特别是对于超高清图像去雾任务,大量堆积MLP的模型在资源受限的设备上执行一张超高清带雾图像时会出现内存溢出的问题。为了解决这个问题,本文提出了一种可以在单个GPU上对分辨率为4 k的图像进行实时去雾(110 f/s)的模型,该模型的建模过程中保持了图像空间结构信息,同时具有低计算复杂度的优点。 展开更多
关键词 图像去雾 超高清图像 多层感知机 空间拓扑信息 局部特征提取 全局特征提取 深度学习 实时去雾
下载PDF
基于半监督学习代理辅助的混合进化算法
16
作者 任志海 李贞 《科学技术创新》 2024年第12期91-95,共5页
针对目标函数评价昂贵的优化问题,在计算资源有限的情况下很难获得足够数据训练一个准确的全局代理模型,然而,不准确的全局代理模型其潜在优势是可以平滑局部极值点,从而可以引导算法加速找到最优解。另一方面,局部模型虽然不能辅助算... 针对目标函数评价昂贵的优化问题,在计算资源有限的情况下很难获得足够数据训练一个准确的全局代理模型,然而,不准确的全局代理模型其潜在优势是可以平滑局部极值点,从而可以引导算法加速找到最优解。另一方面,局部模型虽然不能辅助算法跳出局部最优,但是其相对于全局模型在局部区域具有较好的拟合效果。本文利用这两类模型的优点,针对计算昂贵问题提出了基于半监督学习代理模型的混合进化算法(SSL-SAHA)。在现有算法的基础上,对局部搜索部分进行了改进。利用在全局搜索过程中建立的集成模型选择一些未真实计算的个体,一起用于训练局部模型,从而提高局部RBF模型的估值准确度。实验结果表明,此算法可以有效求解计算昂贵问题。 展开更多
关键词 代理模型 元启发式算法 全局搜索 局部搜索 半监督学习
下载PDF
融合多尺度数据的机器学习算法在预测模型中的应用
17
作者 蒋蕊 马绥 《计算机应用文摘》 2024年第17期73-75,共3页
随着数据收集和处理技术的飞速发展,多尺度数据在各领域的应用越来越广泛。文章探讨了融合多尺度数据的机器学习算法在预测模型中的应用,并分析了其在提高预测精度和模型鲁棒性方面的优势。通过对不同尺度数据的融合,可以捕获数据的全... 随着数据收集和处理技术的飞速发展,多尺度数据在各领域的应用越来越广泛。文章探讨了融合多尺度数据的机器学习算法在预测模型中的应用,并分析了其在提高预测精度和模型鲁棒性方面的优势。通过对不同尺度数据的融合,可以捕获数据的全局和局部特征,为预测模型提供更全面的信息。 展开更多
关键词 多尺度数据 机器学习算法 预测模型 局部特征 全局特征
下载PDF
Unsupervised Nonlinear Adaptive Manifold Learning for Global and Local Information 被引量:4
18
作者 Jiajun Gao Fanzhang Li +1 位作者 Bangjun Wang Helan Liang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第2期163-171,共9页
In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manif... In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets. 展开更多
关键词 unsupervised manifold learning global and local information adaptive neighbor selection method kernel matrix
原文传递
A novel multimode process monitoring method integrating LCGMM with modified LFDA 被引量:4
19
作者 任世锦 宋执环 +1 位作者 杨茂云 任建国 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1970-1980,共11页
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi... Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process. 展开更多
关键词 Multimode process monitoring Discriminant local consistency Gaussian mixture model Modified local Fisher discriminant analysis global fault detection index Tennessee Eastman process
下载PDF
深度特征的实例图像检索算法综述 被引量:4
20
作者 季长清 王兵兵 +1 位作者 秦静 汪祖民 《计算机科学与探索》 CSCD 北大核心 2023年第7期1565-1575,共11页
基于内容的图像检索算法(CBIR)目标是在数量庞大的图像数据库中通过分析视觉内容,找出与查询图像在语义上匹配或相近的图像。其中通过特征提取获得具有判别性的图像表示对检索结果至关重要。随着深度学习的不断发展,图像检索中使用的图... 基于内容的图像检索算法(CBIR)目标是在数量庞大的图像数据库中通过分析视觉内容,找出与查询图像在语义上匹配或相近的图像。其中通过特征提取获得具有判别性的图像表示对检索结果至关重要。随着深度学习的不断发展,图像检索中使用的图像特征表示方法也逐渐由原来的基于手工特征的方法转变为基于深度特征的方法。通过从特征提取的不同方法角度出发,回顾并追踪了最近基于深度特征的图像检索算法。对基于深度特征的图像检索算法分为基于深度全局特征与基于深度局部特征的图像检索算法两方面进行综述,其中在基于深度局部特征算法中重点关注了深度卷积特征聚合技术。并对现在广泛应用的深度全局与局部特征融合的图像检索方法进行归纳。探讨了深度特征的实例图像检索技术在遥感图像检索、电子商务产品检索和医疗图像检索领域中的实际应用,并比较这些特征提取算法在图像检索精度方面的表现。最后展望了深度特征提取技术在实例图像检索领域的未来研究趋势。 展开更多
关键词 实例图像检索 深度学习 深度全局特征 深度局部特征
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部