Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ...Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.展开更多
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D...Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress;therefore, we hypothesized that lycopene can reduce the level of oxida...Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress;therefore, we hypothesized that lycopene can reduce the level of oxidative stress in vascular dementia. A vascular dementia model was established by permanent bilateral ligation of common carotid arteries. The dosage groups were treated with lycopene(50, 100 and 200 mg/kg) every other day for 2 months. Rats without bilateral carotid artery ligation were prepared as a sham group. To test the ability of learning and memory, the Morris water maze was used to detect the average escape latency and the change of search strategy. Hematoxylin-eosin staining was used to observe changes of hippocampal neurons. The levels of oxidative stress factors, superoxide dismutase and malondialdehyde, were measured in the hippocampus by biochemical detection. The levels of reactive oxygen species in the hippocampus were observed by dihydroethidium staining. The distribution and expression of oxidative stress related protein, neuron-restrictive silencer factor, in hippocampal neurons were detected by immunofluorescence histochemistry and western blot assays. After 2 months of drug administration,(1) in the model group, the average escape latency was longer than that of the sham group, and the proportion of straight and tend tactics was lower than that of the sham group, and the hippocampal neurons were irregularly arranged and the cytoplasm was hyperchromatic.(2) The levels of reactive oxygen species and malondialdehyde in the hippocampus of the model group rats were increased, and the activity of superoxide dismutase was decreased.(3) Lycopene(50, 100 and 200 mg/kg) intervention improved the above changes, and the lycopene 100 mg/kg group showed the most significant improvement effect.(4) Neuron-restrictive silencer factor expression in the hippocampus was lower in the sham group and the lycopene 100 mg/kg group than in the model group.(5) The above data indicate that lycopene 100 mg/kg could protect against the learning-memory ability impairment of vascular dementia rats. The protective mechanism was achieved by inhibiting oxidative stress in the hippocampus. The experiment was approved by the Animal Ethics Committee of Fujian Medical University, China(approval No. 2014-025) in June 2014.展开更多
Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generation...Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain, DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain, The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Condusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion.展开更多
Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, lead...Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level(microbiome and metabolome).Methods We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.Results Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome, featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic(GABAergic) synapse, and arachidonic acid(AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.Conclusion Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.展开更多
Studies in animals indicate that sevoflurane exposure in the second trimester of pregnancy has harmful effects on the learning and memory of offspring.Whether an enriched environment can reverse the damage of sevoflur...Studies in animals indicate that sevoflurane exposure in the second trimester of pregnancy has harmful effects on the learning and memory of offspring.Whether an enriched environment can reverse the damage of sevoflurane exposure in the second trimester of pregnancy on the learning and memory of rat offspring remains unclear.In this study,rats at 14 days of pregnancy were exposed to 3.5%sevoflurane for 2 hours and their offspring were treated with an enriched environment for 20 successive days.We found that the enriched environment for offspring increased nestin and Ki67 levels in hippocampal tissue,increased hippocampal neurogenesis,inhibited glycogen synthase kinase 3βactivity,and increased the expression of cell proliferation-relatedβ-catenin and apoptosis-related Bcl-2,indicating that an enriched environment reduces sevoflurane-induced damage by increasing the proliferation of stem cells in the hippocampus.These findings suggest that an enriched environment can reverse the effects of sevoflurane inhaled by rats during the second trimester of pregnancy on learning and memory of offspring.This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University(approval No.2018PS07K)on January 2,2018.展开更多
Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in...Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in the control group were intraperitoneally injected with saline, while those in the solvent control group were intraperitoneally injected with DMSO + sulfobutyl-β-cyclodextrin solvent, and those in the BI-D1870 group were intraperitoneally injected with BI-D1870. All the rats’ appearance and behavior were daily observed, and body weight was recorded on the day 15, 30, 45, 60, 75 and 82 of BI-D1870 injected. Morris water maze was used to screen the rats’ learning and memory acquisition ability on the day 22 - 25, 52 - 55, and 82 - 85 of training by BI-D1870 treated. The successful rates of the rats’ memory impairment were respectively calculated for three times screening. Results: During the whole experiment, there was no obvious difference in appearance and fur color in all rats. The rats’ agitation began to appear on the day 10th of BI-D1870 given. The agitation rats’ number and rats’ body weight gradually increased along with BI-D1870 treated (P P Conclusion: Intraperitoneal injection of BI-D1870 can induce the rats’ learning and memory acquisition ability disorder.展开更多
OBJECTIVE Tumor necrosis factor-α(TNF-α) plays a vital role in cognitive dysfunction caused by stress.In our previous study, Liuwei Dihuang-active fraction combination(LW-AFC) could attenuate the effects of mental s...OBJECTIVE Tumor necrosis factor-α(TNF-α) plays a vital role in cognitive dysfunction caused by stress.In our previous study, Liuwei Dihuang-active fraction combination(LW-AFC) could attenuate the effects of mental stress and non-psychotic stress in mice. The aim of this study is to investigate the effects of LW-AFC on cognitive dysfunction caused by TNF-α in mice. METHODS 40 male BALB/c mice were divided into 4 groups according to their body weight,including control, TNF-α model, LW-AFC treatment and Etanercept(TNF-α antagonist) treatment groups. LW-AFC(1.6 or 3.2 g·kg-1 per day) were orally administrated for 7 consecutive days before TNF-α administration. Etanercept was injected subcutaneously at 30 mg·kg-1 the day before TNF-α administration. One hour before the behavioral test, TNF-αwere injected intraperitoneally at 0.2 mg·kg-1 to mice. RESULTS Compared with control group, the time of mice stayed in the target quadrant and the number of mice crossing the plate significantly decreased after TNF-α injection, suggested that the spatial learning and memory ability of the mice were impaired. LW-AFC administration could increase the time of mice stayed in the target quadrant and the number of mice crossing the plate significantly at 1.6 g·kg-1, indicated that LW-AFC could improve spatial learning and memory in TNF-α treated mice. CONCLUSION LW-AFC can improve spatial learning and memory impairment induced by TNF-α in mice, the further mechanism still need to be clarified.展开更多
OBJECTIVE To investigate the influence of gingerol on the improvement of learning and memory impairment of rat model of Alzheimer disease induced by β-amyloid peptide fragment 25-35(Aβ_(25-35)) and to analysis the p...OBJECTIVE To investigate the influence of gingerol on the improvement of learning and memory impairment of rat model of Alzheimer disease induced by β-amyloid peptide fragment 25-35(Aβ_(25-35)) and to analysis the possible mechanism. METHODS SD rats were randomly divided into 5groups: blank control group,model group,sham-operated group,low dose drug group(gingerol emulsion,10 mg·kg^(-1)·d^(-1)),high dose drug group(gingerol emulsion,50 mg·kg^(-1)·d^(-1)). Model group and two drug groups were injected Aβ_(25-35)(5 μL) in lateral cerebral ventricle. Sham-operated group were injected the same amount of sterile PBS solution. For blank control group without any treatment. When all the rats refresh themselves and had post-operated activities,two drug groups were gavaged with different concentration of gingerol emulsion,Meanwhile,sham-operated group were gavaged with sterile physiological saline,the remaining two groups without any treatment. After three weeks,we make use of Y labyrinth to test the ability of space learning and memory of rats. Finally,rats were sacrificed to collect blood by abdominal aortic method. The content of acetylcholine(ACh),SOD and MDA were detected in serum. RESULTS(1) Compared with blank control group,the ability of learning and memory of model group rats were weakened,the error times increased in Y labyrinth experiment. In addition,the content of ACh and the activity of SOD significantly decreased,the content of MDA increased(P<0.05).(2) On the contrary,the rats gavaged with gingerol emusion have less error times in Y labyrinth experiment compared with model group. the content of Ach and the activity of SOD significantly increased,the content of MDA decreased(P<0.05). However,two different gingerol emusion concentration groups have no significantly difference. CONCLUSION The ability of learning and memory of rats gavaged with gingerol emusion were significantly improved compared with Aβ_(25-35) induced rats without any treatment.Its mechanism may be related to antioxidant and neurotransmitter.展开更多
OBJECTIVE To investigate the effects of imperatorin on the spatial learning memory impairment and neuroinflammation in model mice of Alzheimer disease(AD)induced by intracerebroventricular injection of Aβ1-42.METHODS...OBJECTIVE To investigate the effects of imperatorin on the spatial learning memory impairment and neuroinflammation in model mice of Alzheimer disease(AD)induced by intracerebroventricular injection of Aβ1-42.METHODS Mouse model of AD was established by injection of Aβ1-42 into the lateral ventricles.Im⁃peratorin(2.5 and 5.0 mg·kg-1,daily)was inject⁃ed by intraperitoneally 1 h after intracerebroven⁃tricular injection for 13 d.The effect of imperato⁃rin on the spatial learning and memory impair⁃ment was assessed by eight arm maze tests.The levels of cytokines TNF-α,IL-1β,IL-6,IL-18 and chemokines MCP-1 in mouse cortex and hip⁃pocampus were detected by ELISA.The protein expression of NF-κB P65,TLR4,MyD88,p-P38,p-ERK,and p-JNK were detected by Western blotting.RESULTS As compared with the AD model group,imperatorin treatment significantly attenuated Aβ1-42-induced spatial learning and memory impairment assessed by eight arm maze tests.In addition,imperatorin significantly reduced the levels of cytokines TNF-α,IL-1β,IL-6,IL-18 and chemokines MCP-1 in the cerebral cortex and hippocampus.Meanwhile,Western blotting results showed that imperatorin treat⁃ment significantly down-regulated the protein expression of NF-κB P65,TLR4,MyD88,p-P38,p-ERK,and p-JNK.CONCLUSION Imperatorin has neuroprotective effects in the Aβ1-42 induced AD model mice and its mechanism may be partially associated with the inhibition of inflam⁃matory response in the cortex and hippocampus.展开更多
Parkinson’s disease (PD) is a heterogenous disease caused by multifactorial etiology. PD is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra and the accumulation of Lewy bodies. In t...Parkinson’s disease (PD) is a heterogenous disease caused by multifactorial etiology. PD is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra and the accumulation of Lewy bodies. In this study, two Drosophila PD models by exposing Drosophila to rotenone (sporadic PD models) are proposed, and the human α-synuclein A30P protein (family PD models) in Drosophila is expressed respectively. Both models recapitulated the main human PD symptoms including the loss of dopaminergic neurons in the brain and severe locomotor deficits. Our study finds that Rotenone induces more serious learning and memory impairment than α-synuclein A30P does.展开更多
Objective: Throughout the world, fetal growth restriction(FGR) is one of the most severe complications occurring during pregnancy. It is subsequently associated with neurologic abnormalities in chldren. Our aim was...Objective: Throughout the world, fetal growth restriction(FGR) is one of the most severe complications occurring during pregnancy. It is subsequently associated with neurologic abnormalities in chldren. Our aim was to investigate the spatial learning and memory ability of rat offspring born With FGR. Methods:A rat model of FGR was constructed using the method of passive smoking. Spatial learning and memory were studied in rat offspring born with FGR by assessing the animals' performance using the Morris water maze task. Results: At 1- and 2- months of age, both female and male offspring rats showed impairment of performance, while at 4 months of age, only female rats showed impaired performance. The FGR offspring spent a longer time swimming and used inefficient strategies(P〈 0.05, respectively). However, there were no significant maze performance FGR effects in the 4 month old male rats. In all groups of FGR offspring, irrespective of age or sex, the time spent in the platform quadrant by the rat was significantly less than that in the control group(P〈 0.05). Conclusion: The Morris water maze performance decreased in rat offspring born with FGR. It is suggested that FGR can cause impairments of spatial learning and memory in young animals.展开更多
Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models ...Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups(with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal(ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups(n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels ofphosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. Conclusion Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.展开更多
Objective:We aimed to investigate the effects of osthole on learning and memory impairment of AD mice induced by injection of Aβ25-35 and the content of Ca2+、GLU、Ab1-42 in the brain tissue and peripheral blood.Meth...Objective:We aimed to investigate the effects of osthole on learning and memory impairment of AD mice induced by injection of Aβ25-35 and the content of Ca2+、GLU、Ab1-42 in the brain tissue and peripheral blood.Methods:Mice were randomly assigned to sham operation,Aβ25-35,Aβ25-35+Ost-L,Aβ25-35+Ost-M,and Aβ25-35+Ost-H group.Water maze test was performed to assessing spatial learning ability of mice.It is determined that the MDA level and the activity of SOD in the brain tissue of mice in each group by colorimetry.The GLU kit and Ca2+kit were used to detect the GLU,Ca2+in tissue and serum.Elisa was used to detect the expression of Aβ1-42 in the hippocampus and serum of mice.HE staining and silver staining were used to detect neuron apoptosis and pathological changes in brain slices.Results:①Effects of osthole on learning and memory:With the increase of training day,the escape latencies continuously reduced in each experimental group,the escape latencies of the model group was longer on the 1st,2nd,3rd,and 5th days than the normal group,the difference was statistically significant(day 3,4:P<0.05,day 5:P<0.01);compared with the model group,the escaping latency on the fifth day of the OST low-medium high-dose group was significantly shortened,which was statistically significant(P<0.05).②Effects on oxidative stresspathway:the SOD activity of AD mice in the hippocampus model group was lower than that in the normal group,which was statistically significant(P<0.05);The SOD activity in the OST group was higher than that in the model group,which was statistically significant(P<0.05).The MDA content in the model group was significantly higher than that in the normal group(P<0.05).The MDA content in the OST high-dose group was lower than that in the model group,which was statistically significant(P<0.05).③Effects of GLU levels on neurotransmitters:the results of the detection of GLU in cortical area and GLU in serum of AD mice in OST dose groups showed that serum GLU levels in the model group were significantly lower than those in the sham group,which was statistically significant(P<0.05).GLU levels in the cortical area were also significantly higher than those in the sham group,which was statistically significant(P<0.05).Compared with the model group,GLU levels in the OST administration group were significantly downregulated.Among the serum,the effect of medium dose group was obvious.Although there was a trend of down-regulation in the cortical administration group,there was no statistical significance.④Changes in Ca2+concentration in the brain;Detection of intracellular Ca ion concentration in AD mice by OST doses showed that,compared with the sham group,the model group was significantly upregulated in cortical Ca2+levels.There was no statistical difference in the administration group.Compared with the model group,the concentration of Ca2+in the OST-H group significantly decreased.⑤Effect on levels of Ab1-42 in hippocampus and serum:model group had significantly higher Ab1-42 levels in hippocampus than in sham operation group,which was statistically significant(P<0.05).Ab1-42 in serum was also significantly upregulated compared to the sham group,which was statistically significant(P<0.05).Compared with the model group,the levels of Aβ1-42 in the OST administration group were significantly down-regulated,with the lower and middle doses in the hippocampus being more significant,while the serum was more pronounced at lower doses.⑥Silver staining to detect the tangles of hippocampal neurons:Neuron tangles in the hippocampal CA1 region showed a dark brown-yellow granule distribution in the nuclei of the model group(positive expression).Nerve cell body and dendrites,axons are black or black red,background light yellow.Compared with the model group,the administration group has improved significantly.Conclusion:OST improves spatial learning and memory of dementia model mice injected with Ab25-35 in both hippocampus.Experimental studies have shown that OST has different degrees of regulation on neuronal apoptosis,Ca2+/GLU/oxidative stress and other pathways,and it plays a role in improving multiple AD pathological changes and delaying the pathogenesis of neurodegenerative diseases.展开更多
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac...The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.展开更多
Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attack...Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%.展开更多
Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigat...Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigate BPA-induced toxicities. Garcinia kola (GK) and its bioactive compound, kolaviron, are well-established natural antioxidants, which can exert protective effects against BPA-induced toxicities. This study was designed to investigate the likely mitigating effect of GK and kolaviron on BPA-induced memory impairment and hippocampal neuroinflammation in male Wistar rats. Thirty-five rats were equally grouped and treated as follows: I and II received distilled water and corn oil, respectively at 0.2 mL, while III - VII received BPA (50 mg/kg), BPA + GK (200 mg/kg), BPA + kolaviron (200 mg/kg), GK and kolaviron, respectively for 28 days p.o. Thereafter, behavioral studies were done using the Novel Object Recognition and Y maze tests. Subsequently under anaesthesia, the hippocampus in each animal was dissected out, homogenized and analysed for malondialdehyde, superoxide dismutase, catalase, reduced glutathione, glutathione transferase, nitrites, interleukin-6, tumour necrosis factor-α, acetylcholinesterase, glutamate acid decarboxylase, and arginase activity. Data were analyzed by ANOVA and Tukey Post-hoc test at p p Garcinia kola and Kolaviron mitigate bisphenol A-induced memory impairment and neuroinflammation via antioxidant potentiation and neurotransmitter balance.展开更多
Sleep disorders and memory impairments are prevalent in clinical practice and often coexist,significantly impacting individuals’physical,emotional,and cognitive health.The comorbidity between these conditions is mult...Sleep disorders and memory impairments are prevalent in clinical practice and often coexist,significantly impacting individuals’physical,emotional,and cognitive health.The comorbidity between these conditions is multifactorial,involving neurobiological,endocrine,and metabolic factors.Structural brain changes,neuroinflammation,oxidative stress,and neurotransmitter imbalances exacerbate impairments in both sleep and memory function.This paper reviews current combination therapy strategies for managing comorbid sleep and memory disorders,analyzing the effectiveness of pharmacological treatments(such as benzodiazepines and cholinesterase inhibitors)and non-pharmacological interventions(such as Cognitive Behavioral Therapy for Insomnia(CBT-I)and cognitive training).While combination therapies show promising potential,challenges such as drug interactions and patient adherence remain.Future research should focus on exploring underlying mechanisms,developing personalized treatment approaches,and integrating novel therapeutic strategies.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81730033,82171193(to XG)the Key Talent Project for Strengthening Health during the 13^(th)Five-Year Plan Period,No.ZDRCA2016069(to XG)+1 种基金the National Key R&D Program of China,No.2018YFC2001901(to XG)Jiangsu Provincial Medical Key Discipline,No.ZDXK202232(to XG)。
文摘Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction.
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
文摘Background:Over the past few decades,a threefold increase in obesity and type 2 diabetes(T2D)has placed a heavy burden on the health-care system and society.Previous studies have shown correlations between obesity,T2D,and neurodegenera-tive diseases,including dementia.It is imperative to further understand the relation-ship between obesity,T2D,and cognitive deficits.Methods:This investigation tested and evaluated the cognitive impact of obesity and T2D induced by high-fat diet(HFD)and the effect of the host genetic background on the severity of cognitive decline caused by obesity and T2D in collaborative cross(CC)mice.The CC mice are a genetically diverse panel derived from eight inbred strains.Results:Our findings demonstrated significant variations in the recorded phenotypes across different CC lines compared to the reference mouse line,C57BL/6J.CC037 line exhibited a substantial increase in body weight on HFD,whereas line CC005 ex-hibited differing responses based on sex.Glucose tolerance tests revealed significant variations,with some lines like CC005 showing a marked increase in area under the curve(AUC)values on HFD.Organ weights,including brain,spleen,liver,and kidney,varied significantly among the lines and sexes in response to HFD.Behavioral tests using the Morris water maze indicated that cognitive performance was differentially affected by diet and genetic background.Conclusions:Our study establishes a foundation for future quantitative trait loci map-ping using CC lines and identifying genes underlying the comorbidity of Alzheimer's disease(AD),caused by obesity and T2D.The genetic components may offer new tools for early prediction and prevention.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
基金financially supported by the National Innovation and Entrepreneurship Training Project of China in 2013,No.201310392009(to XZZ)the Innovation and Entrepreneurship Training Project of Fujian Province of China in 2014,No.201410392058(to XZZ)
文摘Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress;therefore, we hypothesized that lycopene can reduce the level of oxidative stress in vascular dementia. A vascular dementia model was established by permanent bilateral ligation of common carotid arteries. The dosage groups were treated with lycopene(50, 100 and 200 mg/kg) every other day for 2 months. Rats without bilateral carotid artery ligation were prepared as a sham group. To test the ability of learning and memory, the Morris water maze was used to detect the average escape latency and the change of search strategy. Hematoxylin-eosin staining was used to observe changes of hippocampal neurons. The levels of oxidative stress factors, superoxide dismutase and malondialdehyde, were measured in the hippocampus by biochemical detection. The levels of reactive oxygen species in the hippocampus were observed by dihydroethidium staining. The distribution and expression of oxidative stress related protein, neuron-restrictive silencer factor, in hippocampal neurons were detected by immunofluorescence histochemistry and western blot assays. After 2 months of drug administration,(1) in the model group, the average escape latency was longer than that of the sham group, and the proportion of straight and tend tactics was lower than that of the sham group, and the hippocampal neurons were irregularly arranged and the cytoplasm was hyperchromatic.(2) The levels of reactive oxygen species and malondialdehyde in the hippocampus of the model group rats were increased, and the activity of superoxide dismutase was decreased.(3) Lycopene(50, 100 and 200 mg/kg) intervention improved the above changes, and the lycopene 100 mg/kg group showed the most significant improvement effect.(4) Neuron-restrictive silencer factor expression in the hippocampus was lower in the sham group and the lycopene 100 mg/kg group than in the model group.(5) The above data indicate that lycopene 100 mg/kg could protect against the learning-memory ability impairment of vascular dementia rats. The protective mechanism was achieved by inhibiting oxidative stress in the hippocampus. The experiment was approved by the Animal Ethics Committee of Fujian Medical University, China(approval No. 2014-025) in June 2014.
文摘Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain, DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain, The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Condusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion.
基金supported by National Natural Science Foundation of China [No. 81773405 to Y.Q. and No. 82173644to X.Y.]Shanxi Natural Science Foundation of China [No.202203021211246 and No. 202103021224242]。
文摘Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level(microbiome and metabolome).Methods We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.Results Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome, featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic(GABAergic) synapse, and arachidonic acid(AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.Conclusion Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.
文摘Studies in animals indicate that sevoflurane exposure in the second trimester of pregnancy has harmful effects on the learning and memory of offspring.Whether an enriched environment can reverse the damage of sevoflurane exposure in the second trimester of pregnancy on the learning and memory of rat offspring remains unclear.In this study,rats at 14 days of pregnancy were exposed to 3.5%sevoflurane for 2 hours and their offspring were treated with an enriched environment for 20 successive days.We found that the enriched environment for offspring increased nestin and Ki67 levels in hippocampal tissue,increased hippocampal neurogenesis,inhibited glycogen synthase kinase 3βactivity,and increased the expression of cell proliferation-relatedβ-catenin and apoptosis-related Bcl-2,indicating that an enriched environment reduces sevoflurane-induced damage by increasing the proliferation of stem cells in the hippocampus.These findings suggest that an enriched environment can reverse the effects of sevoflurane inhaled by rats during the second trimester of pregnancy on learning and memory of offspring.This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University(approval No.2018PS07K)on January 2,2018.
文摘Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in the control group were intraperitoneally injected with saline, while those in the solvent control group were intraperitoneally injected with DMSO + sulfobutyl-β-cyclodextrin solvent, and those in the BI-D1870 group were intraperitoneally injected with BI-D1870. All the rats’ appearance and behavior were daily observed, and body weight was recorded on the day 15, 30, 45, 60, 75 and 82 of BI-D1870 injected. Morris water maze was used to screen the rats’ learning and memory acquisition ability on the day 22 - 25, 52 - 55, and 82 - 85 of training by BI-D1870 treated. The successful rates of the rats’ memory impairment were respectively calculated for three times screening. Results: During the whole experiment, there was no obvious difference in appearance and fur color in all rats. The rats’ agitation began to appear on the day 10th of BI-D1870 given. The agitation rats’ number and rats’ body weight gradually increased along with BI-D1870 treated (P P Conclusion: Intraperitoneal injection of BI-D1870 can induce the rats’ learning and memory acquisition ability disorder.
基金National Science and Technology Major Project of China(2016ZX09J16104-001)
文摘OBJECTIVE Tumor necrosis factor-α(TNF-α) plays a vital role in cognitive dysfunction caused by stress.In our previous study, Liuwei Dihuang-active fraction combination(LW-AFC) could attenuate the effects of mental stress and non-psychotic stress in mice. The aim of this study is to investigate the effects of LW-AFC on cognitive dysfunction caused by TNF-α in mice. METHODS 40 male BALB/c mice were divided into 4 groups according to their body weight,including control, TNF-α model, LW-AFC treatment and Etanercept(TNF-α antagonist) treatment groups. LW-AFC(1.6 or 3.2 g·kg-1 per day) were orally administrated for 7 consecutive days before TNF-α administration. Etanercept was injected subcutaneously at 30 mg·kg-1 the day before TNF-α administration. One hour before the behavioral test, TNF-αwere injected intraperitoneally at 0.2 mg·kg-1 to mice. RESULTS Compared with control group, the time of mice stayed in the target quadrant and the number of mice crossing the plate significantly decreased after TNF-α injection, suggested that the spatial learning and memory ability of the mice were impaired. LW-AFC administration could increase the time of mice stayed in the target quadrant and the number of mice crossing the plate significantly at 1.6 g·kg-1, indicated that LW-AFC could improve spatial learning and memory in TNF-α treated mice. CONCLUSION LW-AFC can improve spatial learning and memory impairment induced by TNF-α in mice, the further mechanism still need to be clarified.
基金The project supported by National College Students'Innovative and Entrepreneurial Training Project(201510439078)Science and Technology Development Plan of Tai'an City(201540707)
文摘OBJECTIVE To investigate the influence of gingerol on the improvement of learning and memory impairment of rat model of Alzheimer disease induced by β-amyloid peptide fragment 25-35(Aβ_(25-35)) and to analysis the possible mechanism. METHODS SD rats were randomly divided into 5groups: blank control group,model group,sham-operated group,low dose drug group(gingerol emulsion,10 mg·kg^(-1)·d^(-1)),high dose drug group(gingerol emulsion,50 mg·kg^(-1)·d^(-1)). Model group and two drug groups were injected Aβ_(25-35)(5 μL) in lateral cerebral ventricle. Sham-operated group were injected the same amount of sterile PBS solution. For blank control group without any treatment. When all the rats refresh themselves and had post-operated activities,two drug groups were gavaged with different concentration of gingerol emulsion,Meanwhile,sham-operated group were gavaged with sterile physiological saline,the remaining two groups without any treatment. After three weeks,we make use of Y labyrinth to test the ability of space learning and memory of rats. Finally,rats were sacrificed to collect blood by abdominal aortic method. The content of acetylcholine(ACh),SOD and MDA were detected in serum. RESULTS(1) Compared with blank control group,the ability of learning and memory of model group rats were weakened,the error times increased in Y labyrinth experiment. In addition,the content of ACh and the activity of SOD significantly decreased,the content of MDA increased(P<0.05).(2) On the contrary,the rats gavaged with gingerol emusion have less error times in Y labyrinth experiment compared with model group. the content of Ach and the activity of SOD significantly increased,the content of MDA decreased(P<0.05). However,two different gingerol emusion concentration groups have no significantly difference. CONCLUSION The ability of learning and memory of rats gavaged with gingerol emusion were significantly improved compared with Aβ_(25-35) induced rats without any treatment.Its mechanism may be related to antioxidant and neurotransmitter.
文摘OBJECTIVE To investigate the effects of imperatorin on the spatial learning memory impairment and neuroinflammation in model mice of Alzheimer disease(AD)induced by intracerebroventricular injection of Aβ1-42.METHODS Mouse model of AD was established by injection of Aβ1-42 into the lateral ventricles.Im⁃peratorin(2.5 and 5.0 mg·kg-1,daily)was inject⁃ed by intraperitoneally 1 h after intracerebroven⁃tricular injection for 13 d.The effect of imperato⁃rin on the spatial learning and memory impair⁃ment was assessed by eight arm maze tests.The levels of cytokines TNF-α,IL-1β,IL-6,IL-18 and chemokines MCP-1 in mouse cortex and hip⁃pocampus were detected by ELISA.The protein expression of NF-κB P65,TLR4,MyD88,p-P38,p-ERK,and p-JNK were detected by Western blotting.RESULTS As compared with the AD model group,imperatorin treatment significantly attenuated Aβ1-42-induced spatial learning and memory impairment assessed by eight arm maze tests.In addition,imperatorin significantly reduced the levels of cytokines TNF-α,IL-1β,IL-6,IL-18 and chemokines MCP-1 in the cerebral cortex and hippocampus.Meanwhile,Western blotting results showed that imperatorin treat⁃ment significantly down-regulated the protein expression of NF-κB P65,TLR4,MyD88,p-P38,p-ERK,and p-JNK.CONCLUSION Imperatorin has neuroprotective effects in the Aβ1-42 induced AD model mice and its mechanism may be partially associated with the inhibition of inflam⁃matory response in the cortex and hippocampus.
基金supported by the Major State Basic Research and Development Program of China (Grant No.2006CB500702)the National Natural Science Foundation of China (Grant No.31070954)+1 种基金the Innovation Foundation of Shanghai Commission of Education Science and Technology (Grant No.08ZZ41)the Basic Research Foundation of Shanghai Commission of Science and Technology (Grant Nos.03JC14030,09JC1406600)
文摘Parkinson’s disease (PD) is a heterogenous disease caused by multifactorial etiology. PD is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra and the accumulation of Lewy bodies. In this study, two Drosophila PD models by exposing Drosophila to rotenone (sporadic PD models) are proposed, and the human α-synuclein A30P protein (family PD models) in Drosophila is expressed respectively. Both models recapitulated the main human PD symptoms including the loss of dopaminergic neurons in the brain and severe locomotor deficits. Our study finds that Rotenone induces more serious learning and memory impairment than α-synuclein A30P does.
基金supported by Xi’an Jiaotong University Education Program,Shanxi Province Science and Technology Project(Program No.2004K17-G11)Chinese National Natural Sciences Grant No.30471826
文摘Objective: Throughout the world, fetal growth restriction(FGR) is one of the most severe complications occurring during pregnancy. It is subsequently associated with neurologic abnormalities in chldren. Our aim was to investigate the spatial learning and memory ability of rat offspring born With FGR. Methods:A rat model of FGR was constructed using the method of passive smoking. Spatial learning and memory were studied in rat offspring born with FGR by assessing the animals' performance using the Morris water maze task. Results: At 1- and 2- months of age, both female and male offspring rats showed impairment of performance, while at 4 months of age, only female rats showed impaired performance. The FGR offspring spent a longer time swimming and used inefficient strategies(P〈 0.05, respectively). However, there were no significant maze performance FGR effects in the 4 month old male rats. In all groups of FGR offspring, irrespective of age or sex, the time spent in the platform quadrant by the rat was significantly less than that in the control group(P〈 0.05). Conclusion: The Morris water maze performance decreased in rat offspring born with FGR. It is suggested that FGR can cause impairments of spatial learning and memory in young animals.
基金Supported by the National Natural Science Foundation(30972831)the China Postdoctoral Science Foundation(2013M530880)
文摘Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-Daspartate(NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups(with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal(ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups(n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels ofphosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. Conclusion Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.
文摘Objective:We aimed to investigate the effects of osthole on learning and memory impairment of AD mice induced by injection of Aβ25-35 and the content of Ca2+、GLU、Ab1-42 in the brain tissue and peripheral blood.Methods:Mice were randomly assigned to sham operation,Aβ25-35,Aβ25-35+Ost-L,Aβ25-35+Ost-M,and Aβ25-35+Ost-H group.Water maze test was performed to assessing spatial learning ability of mice.It is determined that the MDA level and the activity of SOD in the brain tissue of mice in each group by colorimetry.The GLU kit and Ca2+kit were used to detect the GLU,Ca2+in tissue and serum.Elisa was used to detect the expression of Aβ1-42 in the hippocampus and serum of mice.HE staining and silver staining were used to detect neuron apoptosis and pathological changes in brain slices.Results:①Effects of osthole on learning and memory:With the increase of training day,the escape latencies continuously reduced in each experimental group,the escape latencies of the model group was longer on the 1st,2nd,3rd,and 5th days than the normal group,the difference was statistically significant(day 3,4:P<0.05,day 5:P<0.01);compared with the model group,the escaping latency on the fifth day of the OST low-medium high-dose group was significantly shortened,which was statistically significant(P<0.05).②Effects on oxidative stresspathway:the SOD activity of AD mice in the hippocampus model group was lower than that in the normal group,which was statistically significant(P<0.05);The SOD activity in the OST group was higher than that in the model group,which was statistically significant(P<0.05).The MDA content in the model group was significantly higher than that in the normal group(P<0.05).The MDA content in the OST high-dose group was lower than that in the model group,which was statistically significant(P<0.05).③Effects of GLU levels on neurotransmitters:the results of the detection of GLU in cortical area and GLU in serum of AD mice in OST dose groups showed that serum GLU levels in the model group were significantly lower than those in the sham group,which was statistically significant(P<0.05).GLU levels in the cortical area were also significantly higher than those in the sham group,which was statistically significant(P<0.05).Compared with the model group,GLU levels in the OST administration group were significantly downregulated.Among the serum,the effect of medium dose group was obvious.Although there was a trend of down-regulation in the cortical administration group,there was no statistical significance.④Changes in Ca2+concentration in the brain;Detection of intracellular Ca ion concentration in AD mice by OST doses showed that,compared with the sham group,the model group was significantly upregulated in cortical Ca2+levels.There was no statistical difference in the administration group.Compared with the model group,the concentration of Ca2+in the OST-H group significantly decreased.⑤Effect on levels of Ab1-42 in hippocampus and serum:model group had significantly higher Ab1-42 levels in hippocampus than in sham operation group,which was statistically significant(P<0.05).Ab1-42 in serum was also significantly upregulated compared to the sham group,which was statistically significant(P<0.05).Compared with the model group,the levels of Aβ1-42 in the OST administration group were significantly down-regulated,with the lower and middle doses in the hippocampus being more significant,while the serum was more pronounced at lower doses.⑥Silver staining to detect the tangles of hippocampal neurons:Neuron tangles in the hippocampal CA1 region showed a dark brown-yellow granule distribution in the nuclei of the model group(positive expression).Nerve cell body and dendrites,axons are black or black red,background light yellow.Compared with the model group,the administration group has improved significantly.Conclusion:OST improves spatial learning and memory of dementia model mice injected with Ab25-35 in both hippocampus.Experimental studies have shown that OST has different degrees of regulation on neuronal apoptosis,Ca2+/GLU/oxidative stress and other pathways,and it plays a role in improving multiple AD pathological changes and delaying the pathogenesis of neurodegenerative diseases.
基金financially supported by the National Natural Science Foundation of China(No.51974028)。
文摘The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
文摘Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%.
文摘Bisphenol A (BPA), a toxicant which can leach into food from plastic containers, is reported to induce neurotoxicity among others via oxidative mechanisms. However, antioxidant compounds have been suggested to mitigate BPA-induced toxicities. Garcinia kola (GK) and its bioactive compound, kolaviron, are well-established natural antioxidants, which can exert protective effects against BPA-induced toxicities. This study was designed to investigate the likely mitigating effect of GK and kolaviron on BPA-induced memory impairment and hippocampal neuroinflammation in male Wistar rats. Thirty-five rats were equally grouped and treated as follows: I and II received distilled water and corn oil, respectively at 0.2 mL, while III - VII received BPA (50 mg/kg), BPA + GK (200 mg/kg), BPA + kolaviron (200 mg/kg), GK and kolaviron, respectively for 28 days p.o. Thereafter, behavioral studies were done using the Novel Object Recognition and Y maze tests. Subsequently under anaesthesia, the hippocampus in each animal was dissected out, homogenized and analysed for malondialdehyde, superoxide dismutase, catalase, reduced glutathione, glutathione transferase, nitrites, interleukin-6, tumour necrosis factor-α, acetylcholinesterase, glutamate acid decarboxylase, and arginase activity. Data were analyzed by ANOVA and Tukey Post-hoc test at p p Garcinia kola and Kolaviron mitigate bisphenol A-induced memory impairment and neuroinflammation via antioxidant potentiation and neurotransmitter balance.
文摘Sleep disorders and memory impairments are prevalent in clinical practice and often coexist,significantly impacting individuals’physical,emotional,and cognitive health.The comorbidity between these conditions is multifactorial,involving neurobiological,endocrine,and metabolic factors.Structural brain changes,neuroinflammation,oxidative stress,and neurotransmitter imbalances exacerbate impairments in both sleep and memory function.This paper reviews current combination therapy strategies for managing comorbid sleep and memory disorders,analyzing the effectiveness of pharmacological treatments(such as benzodiazepines and cholinesterase inhibitors)and non-pharmacological interventions(such as Cognitive Behavioral Therapy for Insomnia(CBT-I)and cognitive training).While combination therapies show promising potential,challenges such as drug interactions and patient adherence remain.Future research should focus on exploring underlying mechanisms,developing personalized treatment approaches,and integrating novel therapeutic strategies.