提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统...提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统的Hankel矩阵,对Hankel矩阵进行奇异值分解即可确定系统的阶次,进而确定系统状态空间模型的参数.仿真研究和实验结果表明,此方法可以准确、快速地提取出结构的参数,且抗噪能力较强.展开更多
针对热工对象的时变性特点及其在运行过程中易受到不确定性干扰的影响,提出一种基于最小均方(least mean square,LMS)自适应滤波器的热工过程建模方法。LMS滤波器以未知对象的输入和输出作为激励和期望信号,通过最速下降法得到未知对象...针对热工对象的时变性特点及其在运行过程中易受到不确定性干扰的影响,提出一种基于最小均方(least mean square,LMS)自适应滤波器的热工过程建模方法。LMS滤波器以未知对象的输入和输出作为激励和期望信号,通过最速下降法得到未知对象的有限脉冲响应(finity impluse response,FIR)模型,其与差分方程或传递函数是等价的。实验仿真和某电厂实际运行数据验证了该算法的有效性。这种建模方法避免了复杂的机理分析,其抽头权值的分布可以表征热工对象的动态特性,为分析热工对象提供了一种手段。展开更多
气动加载系统具有时滞、时变及强非线性等特点,为了提高气动加载系统的控制精度,克服传统PI控制算法的不足,提出一种气动压力加载系统的模糊自适应逆控制方案。利用模糊辨识理论对气动加载系统进行离线逆建模,得到初始逆模型,并将该初...气动加载系统具有时滞、时变及强非线性等特点,为了提高气动加载系统的控制精度,克服传统PI控制算法的不足,提出一种气动压力加载系统的模糊自适应逆控制方案。利用模糊辨识理论对气动加载系统进行离线逆建模,得到初始逆模型,并将该初始逆模型作为初始控制器,控制气动加载系统的输出压力,运行过程中采用最小方均根(Least mean square,LMS)滤波算法在线修正控制器的参数。基于VC++6.0软件开发平台设计系统实时控制程序,在一套电气比例压力阀控气动加载系统上进行试验研究。通过与PI控制算法、模糊比例积分微分(Proportion,integration,differentiation,PID)控制算法进行比较,结果表明设计的气动加载系统控制器控制精度高、响应速度快、抗扰能力强。展开更多
传统的振动控制技术将初始辨识的系统频率响应函数贯穿使用于振动控制的过程中;针对液压振动台系统的时变特性,提出使用基于最小均方误差(least mean square,简称LMS)的自适应算法在线辨识系统的频响函数。平滑周期图功率谱估计法相对...传统的振动控制技术将初始辨识的系统频率响应函数贯穿使用于振动控制的过程中;针对液压振动台系统的时变特性,提出使用基于最小均方误差(least mean square,简称LMS)的自适应算法在线辨识系统的频响函数。平滑周期图功率谱估计法相对现代谱估计法分辨率较低,提出自回归(auto-regressive,简称AR)模型法对振动系统响应信号进行功率谱估计,利用尤利-沃克(Yule-Walker)方程求解AR模型参数,并给出AR模型阶次确定的方法。利用自行开发的基于DSP和ARM多处理器信号处理系统对功率谱复现进行软硬件仿真。结果表明,此方法对振动台功率谱进行复现,复现精度优于传统功率谱复现算法。展开更多
文摘提出一种基于系统状态空间模型和归一化鲁棒最小均方根(NR-LMS,Normalized Robust Least Mean Square)理论的动力学结构参数辨识方法.利用系统的输入-输出数据建立其Hankel-Toeplitz模型,利用NR-LMS算法得到该模型参数的估计并求得系统的Hankel矩阵,对Hankel矩阵进行奇异值分解即可确定系统的阶次,进而确定系统状态空间模型的参数.仿真研究和实验结果表明,此方法可以准确、快速地提取出结构的参数,且抗噪能力较强.
文摘针对热工对象的时变性特点及其在运行过程中易受到不确定性干扰的影响,提出一种基于最小均方(least mean square,LMS)自适应滤波器的热工过程建模方法。LMS滤波器以未知对象的输入和输出作为激励和期望信号,通过最速下降法得到未知对象的有限脉冲响应(finity impluse response,FIR)模型,其与差分方程或传递函数是等价的。实验仿真和某电厂实际运行数据验证了该算法的有效性。这种建模方法避免了复杂的机理分析,其抽头权值的分布可以表征热工对象的动态特性,为分析热工对象提供了一种手段。
文摘气动加载系统具有时滞、时变及强非线性等特点,为了提高气动加载系统的控制精度,克服传统PI控制算法的不足,提出一种气动压力加载系统的模糊自适应逆控制方案。利用模糊辨识理论对气动加载系统进行离线逆建模,得到初始逆模型,并将该初始逆模型作为初始控制器,控制气动加载系统的输出压力,运行过程中采用最小方均根(Least mean square,LMS)滤波算法在线修正控制器的参数。基于VC++6.0软件开发平台设计系统实时控制程序,在一套电气比例压力阀控气动加载系统上进行试验研究。通过与PI控制算法、模糊比例积分微分(Proportion,integration,differentiation,PID)控制算法进行比较,结果表明设计的气动加载系统控制器控制精度高、响应速度快、抗扰能力强。
文摘传统的振动控制技术将初始辨识的系统频率响应函数贯穿使用于振动控制的过程中;针对液压振动台系统的时变特性,提出使用基于最小均方误差(least mean square,简称LMS)的自适应算法在线辨识系统的频响函数。平滑周期图功率谱估计法相对现代谱估计法分辨率较低,提出自回归(auto-regressive,简称AR)模型法对振动系统响应信号进行功率谱估计,利用尤利-沃克(Yule-Walker)方程求解AR模型参数,并给出AR模型阶次确定的方法。利用自行开发的基于DSP和ARM多处理器信号处理系统对功率谱复现进行软硬件仿真。结果表明,此方法对振动台功率谱进行复现,复现精度优于传统功率谱复现算法。