One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ...One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.展开更多
The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribut...The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribution of the current in the grid is not uniform.Hence,unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing.This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors:the least-square curve fitting technique and the compression ratio techniquewith equal grid configuration for both square and rectangular grids.Particle Swarm Optimization(PSO)is adopted for finding out one optimal feasible solution among many feasible solutions of equal grid configuration for both square and rectangular grids.Comparative analysis is also carried out between square and rectangular grids using the least square curve fitting technique as it results in only one unequal grid configuration.Simulation results are obtained by theMATLAB software developed.Percentage of improvement in ground potential rise,step voltage,touch voltage,and grid resistancewith variation in compression ratios are plotted.展开更多
An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. U...A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.展开更多
The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses...The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.展开更多
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti...Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.展开更多
Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resi...Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on asphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.展开更多
Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squ...Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squares support vector regression is proposed. Investigation on real images contaminated by Gaussian noise has demonstrated that the proposed method can achieve an acceptable trade off between the noise removal and smoothing of the edges and details.展开更多
A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposit...A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the materi...This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.展开更多
This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are l...This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are limited. The principle of this method is, under the condition of known typical pulse, step and slope signal response and model structure, to give algorithm of model parameters of identified continuous system by least square mode through derivation. The method is applied to the identification of heat exchange process for a consumer substation, and identification result obtained is compared with that of other conventional methods. After the comparison the result shows that identification accuracy is improved obviously. In addition to the good identification accuracy, this method has the characteristics such as it can identify directly continuous system model, pure lagging time, and is not sensitive to data length in the identification process. All these characteristics show that this method is simple, easy to implement and has good practicability.展开更多
In this paper,we present a tensor least square based model for sand/sandstorm removal in images.The main contributions of this paper are as follows.First,an important intrinsic natural feature of outdoor scenes free o...In this paper,we present a tensor least square based model for sand/sandstorm removal in images.The main contributions of this paper are as follows.First,an important intrinsic natural feature of outdoor scenes free of sand/sandstorm is found that the outlines in RGB channels are somewise similar,which discloses the physical validation using the tensor instead of the matrix.Second,a tensor least square optimization model is presented for the decomposition of edge-preserving base layers and details.This model not only decomposes the color image(taken as an inseparable indivisibility)in X,Y directions,but also in Z direction,which meets the statistical feature of natural scenes and can physically disclose the intrinsic color information.The model’s advantages are twofold:one is the decomposition of edgepreserving base layers and details that can be employed for contrast enhancement without artificial halos,and the other one is the color driving ability that makes the enhanced images as close to natural images as possible via the inherent color structure.Thirdly,the tensor least square optimization model based image enhancement scheme is discussed for the sandstorm weather images.Finally,the experiments and comparisons with the stateof-the-art methods on real degraded images under sandstorm weather are shown to verify our method’s efficiency.展开更多
Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier...Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi a-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.展开更多
The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling alg...The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.展开更多
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia...Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.展开更多
A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed ...A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.展开更多
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coeff...Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.展开更多
A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position erro...A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.展开更多
As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys...As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.展开更多
文摘One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods.
文摘The primary aim of the power system grounding is to safeguard the person and satisfying the performance of the power systemtomaintain reliable operation.With equal conductor spacing grounding grid design,the distribution of the current in the grid is not uniform.Hence,unequal grid conductor span in which grid conductors are concentrated more at the periphery is safer to practice than equal spacing.This paper presents the comparative analysis of two novel techniques that create unequal spacing among the grid conductors:the least-square curve fitting technique and the compression ratio techniquewith equal grid configuration for both square and rectangular grids.Particle Swarm Optimization(PSO)is adopted for finding out one optimal feasible solution among many feasible solutions of equal grid configuration for both square and rectangular grids.Comparative analysis is also carried out between square and rectangular grids using the least square curve fitting technique as it results in only one unequal grid configuration.Simulation results are obtained by theMATLAB software developed.Percentage of improvement in ground potential rise,step voltage,touch voltage,and grid resistancewith variation in compression ratios are plotted.
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
文摘A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.
文摘The GPS multipath signal model is presented, which indicates that the coherent DLL outputs in multipath environment are the convolution between the ideal DLL outputs and the channel responses. So the channel responses can be estimated by a least square method using the observed curve of the DLL discriminator. In terms of the estimated multipath channels, two multipath mitigation methods are discussed, which are equalization filtering and multipath subtracting, respectively. It is shown, by computer simulation, that the least square method has a good performance in channels estimation and the multipath errors can be mitigated almost completely by either of the methods. However, the multipath subtracting method has relative small remnant errors than equalization filtering.
基金supported by the 948 Program of the State Forestry Administration (2009-4-43)the National Natura Science Foundation of China (No.30870420)
文摘Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass.
基金Supported by National Basic Research Program of China(Grant No.2011CB711200)
文摘Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on asphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.
基金Supported by the Foundation of Hubei Provincial Department of Education(No.2003EB0018).
文摘Rather than attempting to separate signal from noise in the spatial domain, it is often advantageous to work in a transform domain. Building on previous work, a novel denoising method based on local adaptive least squares support vector regression is proposed. Investigation on real images contaminated by Gaussian noise has demonstrated that the proposed method can achieve an acceptable trade off between the noise removal and smoothing of the edges and details.
文摘A new model considering corrosion property for grounding grids diagnosis is proposed,which provides reference solutions of ambiguous branches.The constraint total least square method based on singular value decomposition is adopted to improve the effectiveness of grounding grids' diagnosis algorithm.The improvement can weaken the influence of the model's error,which results from the differences between design paper and actual grid.Its influence on touch and step voltages caused by the interior resistance of conductors is taken into account.Simulation results show the validity of this approach.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.
基金Sponsored by the National Eleventh Five-year Plan Key Project of Ministry of Science and Technology of China(Grant No.2006BAJ03A05)and SpecialFunds for Research of Scientific and Technological Innovation Talents in Harbin(Grant No.RC2006XK007001).
文摘This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are limited. The principle of this method is, under the condition of known typical pulse, step and slope signal response and model structure, to give algorithm of model parameters of identified continuous system by least square mode through derivation. The method is applied to the identification of heat exchange process for a consumer substation, and identification result obtained is compared with that of other conventional methods. After the comparison the result shows that identification accuracy is improved obviously. In addition to the good identification accuracy, this method has the characteristics such as it can identify directly continuous system model, pure lagging time, and is not sensitive to data length in the identification process. All these characteristics show that this method is simple, easy to implement and has good practicability.
基金supported by the National Natural Science Foundation of China(61771020,61471412,2019KD0AC02)。
文摘In this paper,we present a tensor least square based model for sand/sandstorm removal in images.The main contributions of this paper are as follows.First,an important intrinsic natural feature of outdoor scenes free of sand/sandstorm is found that the outlines in RGB channels are somewise similar,which discloses the physical validation using the tensor instead of the matrix.Second,a tensor least square optimization model is presented for the decomposition of edge-preserving base layers and details.This model not only decomposes the color image(taken as an inseparable indivisibility)in X,Y directions,but also in Z direction,which meets the statistical feature of natural scenes and can physically disclose the intrinsic color information.The model’s advantages are twofold:one is the decomposition of edgepreserving base layers and details that can be employed for contrast enhancement without artificial halos,and the other one is the color driving ability that makes the enhanced images as close to natural images as possible via the inherent color structure.Thirdly,the tensor least square optimization model based image enhancement scheme is discussed for the sandstorm weather images.Finally,the experiments and comparisons with the stateof-the-art methods on real degraded images under sandstorm weather are shown to verify our method’s efficiency.
基金The project supported by the National Natural Science Foundation of China(10302013,10572022)
文摘Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi a-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.
文摘The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.
文摘Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.
基金Project supported by the National Natural Science Foundation of China(No.10172052).
文摘A meshless approach based on the moving least square method is developed for elasto-plasticity analysis,in which the incremental formulation is used.In this approach,the dis- placement shape functions are constructed by using the moving least square approximation,and the discrete governing equations for elasto-plastic material are constructed with the direct collo- cation method.The boundary conditions are also imposed by collocation.The method established is a truly meshless one,as it does not need any mesh,either for the purpose of interpolation of the solution variables,or for the purpose of construction of the discrete equations.It is simply formu- lated and very efficient,and no post-processing procedure is required to compute the derivatives of the unknown variables,since the solution from this method based on the moving least square approximation is already smooth enough.Numerical examples are given to verify the accuracy of the meshless method proposed for elasto-plasticity analysis.
文摘Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.
基金supported by the Aeronautical Science Foundation of China (20105584004)the Science and Technology on Avionics Integration Laboratory
文摘A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.
基金supported by National Key Scientific Instrument and Equipment Development Project of China,Grant Nos.2013YQ220643the National 863 Program of China,Grant Nos.2014AA06A503.
文摘As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.