In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coef...In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages....In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.展开更多
A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of ...A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.展开更多
Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec as...Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.展开更多
In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear disto...In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.展开更多
In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According t...In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According to the contradiction between the convergence speed and steady-state error of the traditional least mean square(LMS) adaptive filter, an improved LMS adaptive filtering algorithm with variable iteration step is proposed on the basis of the existing algorithms. Based on the Sigmoid function, an expression with three parameters is constructed by function translation and symmetric transformation.As for the error mutation, e(k) and e(k-1) are combined to control the change of the iteration step. The selection and adjustment process of each parameter is described in detail, and the MSE is used to evaluate the performance. The simulation results show that the proposed algorithm significantly increases the convergence speed, reduces the steady-state error, and improves the performance of the adaptive filter. The improved algorithm is applied to the AE signal processing, and the experimental signal is demodulated by an empirical mode decomposition(EMD) envelope to obtain the upper and lower envelopes. Then, the expected function related to the AE signal is established. Finally, the improved algorithm is substituted into the adaptive filter to filter the AE signal. A good result is achieved, which proves the feasibility of adaptive filtering technology in AE signal processing.展开更多
Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggest...Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA0 SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA0 SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.展开更多
Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condit...Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.展开更多
Aimed at the problem of adaptive noise canceling(ANC),three implementary algorithms which are least mean square(LMS) algorithm,recursive least square(RLS) algorithm and fast affine projection(FAP) algorithm,have been ...Aimed at the problem of adaptive noise canceling(ANC),three implementary algorithms which are least mean square(LMS) algorithm,recursive least square(RLS) algorithm and fast affine projection(FAP) algorithm,have been researched.The simulations were made for the performance of these algorithms.The extraction of fetal electrocardiogram(FECG) is applied to compare the application effect of the above algorithms.The proposed FAP algorithm has obvious advantages in computational complexity,convergence speed and steadystate error.展开更多
The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the ap...The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions.To generalize the operator to nonlinear quaternion functions,we define a restricted version of the HR operator,which comes in two versions,the left and the right ones.We then present a detailed analysis of the properties of the operators,including several different product rules and chain rules.Using the new rules,we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions,and prove that the restricted HR gradients are consistent with the gradients in the real domain.As an application,the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided.Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.展开更多
文摘In this paper after analyzing the adaptation process of the proportionate normalized least mean square(PNLMS) algorithm, a statistical model is obtained to describe the convergence process of each adaptive filter coefcient. Inspired by this result, a modified PNLMS algorithm based on precise magnitude estimate is proposed. The simulation results indicate that in contrast to the traditional PNLMS algorithm, the proposed algorithm achieves faster convergence speed in the initial convergence state and lower misalignment in the stead stage with much less computational complexity.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金Project(60532030) supported by the National Natural Science Foundation of China
文摘In an orthogonal frequency division multiplexing(OFDM) system,a time and frequency domain least mean square algorithm(TF-LMS) was proposed to cancel the frequency offset(FO).TF-LMS algorithm is composed of two stages.Firstly,time domain least mean square(TD-LMS) scheme was selected to pre-cancel the frequency offset in the time domain,and then the interference induced by residual frequency offset was eliminated by the frequency domain mean square(FD-LMS) scheme in frequency domain.The results of bit error rate(BER) and quadrature phase shift keying(QPSK) constellation figures show that the performance of the proposed suppression algorithm is excellent.
基金Supported by the National Natural Science Foundation of China (No. 90716027, 51175319), and Shanghai Talent Development Fund (No.2009020).
文摘A multi-channel active vibration controller based on a filtered-u least mean square (FULMS) control algorithm is analyzed and implemented to solve the problem that the vibration feedback may affect the measuring of the reference signal of the filtered-x least mean square (FXLMS) algorithm in the field of active vibration control. By analyzing the multi-channel FULMS algorithm, the multi-channel controller structure diagram is given, while by analyzing multi-channel FXLMS algorithm and its algorithmic procedure, the control channel model identification strategy is given. This paper also provides an easy but practical way to configure the actuators based on the maximal modal force rule. Taking the configured piezoelectric beam as the research object, an active vibration control experimental platform is established to verify the effectiveness of the identification strategy as well as the FULMS control scheme. Simulation and actual control experiments are done after the model parameters are obtained. Both the simulation and actual experiment results show that the designed multi-channel vibration controller has a good control performance with low order model and rapid convergence.
文摘Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.
基金supported in part by the National Natural Science Foundation of China(No.61601027)
文摘In this paper,a general scheme in digital self-interference cancellation at baseband for zero-IF full-duplex transceivers is presented. We model the self-interference signals specifically with only the nonlinear distortion signals falling in receiving band considered. A joint estimation algorithm is proposed for compensating the time delay and frequency offset taking into account the IQ amplitude and phase imbalances from mixers. The memory effect and nonlinear distortion are adaptively estimated by the de-correlated normalized least mean square(DNLMS) algorithm. Numerical simulation results demonstrate that the proposed self-interference cancellation scheme can efficiently compensate the self-interference and outperform the existing traditional solutions.
基金The National Natural Science Foundation of China(No.51575101)
文摘In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According to the contradiction between the convergence speed and steady-state error of the traditional least mean square(LMS) adaptive filter, an improved LMS adaptive filtering algorithm with variable iteration step is proposed on the basis of the existing algorithms. Based on the Sigmoid function, an expression with three parameters is constructed by function translation and symmetric transformation.As for the error mutation, e(k) and e(k-1) are combined to control the change of the iteration step. The selection and adjustment process of each parameter is described in detail, and the MSE is used to evaluate the performance. The simulation results show that the proposed algorithm significantly increases the convergence speed, reduces the steady-state error, and improves the performance of the adaptive filter. The improved algorithm is applied to the AE signal processing, and the experimental signal is demodulated by an empirical mode decomposition(EMD) envelope to obtain the upper and lower envelopes. Then, the expected function related to the AE signal is established. Finally, the improved algorithm is substituted into the adaptive filter to filter the AE signal. A good result is achieved, which proves the feasibility of adaptive filtering technology in AE signal processing.
文摘Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA0 SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA0 SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.
基金co-supported by the National Basic Research Program of China (No. 623125020103)
文摘Aeromagnetic interference could not be compensated effectively if the precision of parameters which are solved by the aircraft magnetic field model is low. In order to improve the compensation effect under this condition, a method based on small signal model and least mean square(LMS) algorithm is proposed. According to the method, the initial values of adaptive filter's weight vector are calculated with the solved model parameters through small signal model at first,then the small amount of direction cosine and its derivative are set as the input of the filter, and the small amount of the interference is set as the filter's expected vector. After that, the aircraft magnetic interference is compensated by LMS algorithm. Finally, the method is verified by simulation and experiment. The result shows that the compensation effect can be improved obviously by the LMS algorithm when original solved parameters have low precision. The method can further improve the compensation effect even if the solved parameters have high precision.
基金the National Key Technologies R&D Program (No. 2006BAI22B01)
文摘Aimed at the problem of adaptive noise canceling(ANC),three implementary algorithms which are least mean square(LMS) algorithm,recursive least square(RLS) algorithm and fast affine projection(FAP) algorithm,have been researched.The simulations were made for the performance of these algorithms.The extraction of fetal electrocardiogram(FECG) is applied to compare the application effect of the above algorithms.The proposed FAP algorithm has obvious advantages in computational complexity,convergence speed and steadystate error.
文摘The gradients of a quaternion-valued function are often required for quaternionic signal processing algorithms.The HR gradient operator provides a viable framework and has found a number of applications.However,the applications so far have been limited to mainly real-valued quaternion functions and linear quaternionvalued functions.To generalize the operator to nonlinear quaternion functions,we define a restricted version of the HR operator,which comes in two versions,the left and the right ones.We then present a detailed analysis of the properties of the operators,including several different product rules and chain rules.Using the new rules,we derive explicit expressions for the derivatives of a class of regular nonlinear quaternion-valued functions,and prove that the restricted HR gradients are consistent with the gradients in the real domain.As an application,the derivation of the least mean square algorithm and a nonlinear adaptive algorithm is provided.Simulation results based on vector sensor arrays are presented as an example to demonstrate the effectiveness of the quaternion-valued signal model and the derived signal processing algorithm.