期刊文献+
共找到3,537篇文章
< 1 2 177 >
每页显示 20 50 100
Temperature prediction control based on least squares support vector machines 被引量:5
1
作者 BinLIU HongyeSU +1 位作者 WeihuaHUANG JianCHU 《控制理论与应用(英文版)》 EI 2004年第4期365-370,共6页
A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant i... A prediction control algorithm is presented based on least squares support vector machines (LS-SVM) model for a class of complex systems with strong nonlinearity. The nonlinear off-line model of the controlled plant is built by LS-SVM with radial basis function (RBF) kernel. In the process of system running, the off-line model is linearized at each sampling instant, and the generalized prediction control (GPC) algorithm is employed to implement the prediction control for the controlled plant. The obtained algorithm is applied to a boiler temperature control system with complicated nonlinearity and large time delay. The results of the experiment verify the effectiveness and merit of the algorithm. 展开更多
关键词 Predictive control Least squares support vector machines RBF kernel function Generalized prediction control
下载PDF
Prediction of chaotic systems with multidimensional recurrent least squares support vector machines 被引量:2
2
作者 孙建成 周亚同 罗建国 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第6期1208-1215,共8页
In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performa... In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM. 展开更多
关键词 chaotic systems support vector machines least squares noise
下载PDF
Sparse representation based on projection method in online least squares support vector machines 被引量:2
3
作者 Lijuan LI Hongye SU Jian CHU 《控制理论与应用(英文版)》 EI 2009年第2期163-168,共6页
A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected... A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected into the subspace spanned by previous basis vectors (BV) and those inputs whose squared distance from the subspace is higher than a threshold are added in the BV set, while others are rejected. This consequently results in the sparse approximation. In addition, a recursive approach to deleting an exiting vector in the BV set is proposed. Then the online LS-SVM, sparse approximation and BV removal are combined to produce the sparse online LS-SVM algorithm that can control the size of memory irrespective of the processed data size. The suggested algorithm is applied in the online modeling of a pH neutralizing process and the isomerization plant of a refinery, respectively. The detailed comparison of computing time and precision is also given between the suggested algorithm and the nonsparse one. The results show that the proposed algorithm greatly improves the sparsity just with little cost of precision. 展开更多
关键词 Least squares support vector machines PROJECTION SPARSITY pH neutralizing process ISOMERIZATION
下载PDF
Generalized Predictive Control with Online Least Squares Support Vector Machines 被引量:41
4
作者 LI Li-Juan SU Hong-Ye CHU Jian 《自动化学报》 EI CSCD 北大核心 2007年第11期1182-1188,共7页
这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lag... 这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lagrange 的绝对值从最后一个采样时期更多样地决定。当增加新数据对并且删除存在的时,纸给模型参数的递归的算法分别地,一个大矩阵的倒置被避免,存储器能被算法完全控制。非线性的 LS-SVM 模型在每个采样时期在 GPC 算法被使用。抵销过程的 pH 上的概括预兆的控制的实验显示出建议算法的有效性和实物。 展开更多
关键词 普遍预测控制 支持向量机 联机模型 pH补偿过程 模糊控制
下载PDF
New predictive control algorithms based on Least Squares Support Vector Machines 被引量:3
5
作者 刘斌 苏宏业 褚健 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期440-446,共7页
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin... Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms. 展开更多
关键词 Least squares Support vector machines Linear kernel function RBF kernel function Generalized predictive control
下载PDF
Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland 被引量:1
6
作者 秦钟 于强 +2 位作者 李俊 吴志毅 胡秉民 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期491-495,共5页
Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a s... Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem. 展开更多
关键词 Least squares support vector machines (LS-SVMs) Water vapor and carbon dioxide fluxes exchange Radial basis function (RBF) neural networks
下载PDF
MULTI-RESOLUTION LEAST SQUARES SUPPORT VECTOR MACHINES
7
作者 Wang Liejun Zhang Taiyi Zhou Yatong 《Journal of Electronics(China)》 2007年第5期701-704,共4页
The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed alg... The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed algorithm has the same theoretical framework as MRA but with better approximation ability.At a fixed scale MLS-SVM is a classical LS-SVM,but MLS-SVM can gradually approximate the target function at different scales.In experiments,the MLS-SVM is used for nonlinear system identification,and achieves better identification accuracy. 展开更多
关键词 Support vector machines (SVM) Least square method Multi-Resolution Analysis (MRA) Nonlinear system identification
下载PDF
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
8
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
下载PDF
Least Squares One-Class Support Tensor Machine
9
作者 Kaiwen Zhao Yali Fan 《Journal of Computer and Communications》 2024年第4期186-200,共15页
One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification ... One-class classification problem has become a popular problem in many fields, with a wide range of applications in anomaly detection, fault diagnosis, and face recognition. We investigate the one-class classification problem for second-order tensor data. Traditional vector-based one-class classification methods such as one-class support vector machine (OCSVM) and least squares one-class support vector machine (LSOCSVM) have limitations when tensor is used as input data, so we propose a new tensor one-class classification method, LSOCSTM, which directly uses tensor as input data. On one hand, using tensor as input data not only enables to classify tensor data, but also for vector data, classifying it after high dimensionalizing it into tensor still improves the classification accuracy and overcomes the over-fitting problem. On the other hand, different from one-class support tensor machine (OCSTM), we use squared loss instead of the original loss function so that we solve a series of linear equations instead of quadratic programming problems. Therefore, we use the distance to the hyperplane as a metric for classification, and the proposed method is more accurate and faster compared to existing methods. The experimental results show the high efficiency of the proposed method compared with several state-of-the-art methods. 展开更多
关键词 Least square One-Class Support Tensor machine One-Class Classification Upscale Least square One-Class Support vector machine One-Class Support Tensor machine
下载PDF
Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature 被引量:6
10
作者 Mohammad Mesbah Ebrahim Soroush Mashallah Rezakazemi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1238-1248,共11页
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.... Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model. 展开更多
关键词 Hydrate formation temperature(HFT) Natural gas Sour gases Least squares support vector machine Outlier diagnostics Leverage approach
下载PDF
Modeling of Isomerization of C_8 Aromatics by Online Least Squares Support Vector Machine 被引量:7
11
作者 李丽娟 苏宏业 褚建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期437-444,共8页
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling... The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable. 展开更多
关键词 least squares support vector machine multi-variable ONLINE SPARSENESS ISOMERIZATION
下载PDF
Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine 被引量:3
12
作者 XURui-Rui BIANGuo-Xin GAOChen-Feng CHENTian-Lun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期1056-1060,共5页
The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we e... The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values.. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved. 展开更多
关键词 least squares support vector machine nonlinear time series PREDICTION CLUSTERING
下载PDF
Fault diagnosis using a probability least squares support vector classification machine 被引量:4
13
作者 GAO Yang, WANG Xuesong, CHENG Yuhu, PAN Jie School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China 《Mining Science and Technology》 EI CAS 2010年第6期917-921,共5页
Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines ... Coal mines require various kinds of machinery. The fault diagnosis of this equipment has a great impact on mine production. The problem of incorrect classification of noisy data by traditional support vector machines is addressed by a proposed Probability Least Squares Support Vector Classification Machine (PLSSVCM). Samples that cannot be definitely determined as belonging to one class will be assigned to a class by the PLSSVCM based on a probability value. This gives the classification results both a qualitative explanation and a quantitative evaluation. Simulation results of a fault diagnosis show that the correct rate of the PLSSVCM is 100%. Even though samples are noisy, the PLSSVCM still can effectively realize multi-class fault diagnosis of a roller bearing. The generalization property of the PLSSVCM is better than that of a neural network and a LSSVCM. 展开更多
关键词 fault diagnosis PROBABILITY least squares support vector classification machine roller bearing
下载PDF
Application of Least Square Support Vector Machine (LSSVM) for Determination of Evaporation Losses in Reservoirs 被引量:5
14
作者 Pijush Samui 《Engineering(科研)》 2011年第4期431-434,共4页
This article adopts Least Square Support Vector Machine (LSSVM) for prediction of Evaporation Losses (EL) in reservoirs. LSSVM is firmly based on the theory of statistical learning, uses regression technique. The inpu... This article adopts Least Square Support Vector Machine (LSSVM) for prediction of Evaporation Losses (EL) in reservoirs. LSSVM is firmly based on the theory of statistical learning, uses regression technique. The input of LSSVM model is Mean air temperature (T) (?C), Average wind speed (WS)(m/sec), Sunshine hours (SH)(hrs/day), and Mean relative humidity(RH)(%). LSSVM has been used to compute error barn of predicted data. An equation has been developed for the determination of EL. Sensitivity analysis has been also performed to investigate the importance of each of the input parameters. A comparative study has been presented between LSSVM and artificial neural network (ANN) models. This study shows that LSSVM is a powerful tool for determination EL in reservoirs. 展开更多
关键词 EVAPORATION LOSSES Least square Support vector machine Prediction Artificial Neural Network
下载PDF
Predicting of Power Quality Steady State Index Based on Chaotic Theory Using Least Squares Support Vector Machine 被引量:2
15
作者 Aiqiang Pan Jian Zhou +2 位作者 Peng Zhang Shunfu Lin Jikai Tang 《Energy and Power Engineering》 2017年第4期713-724,共12页
An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta... An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability. 展开更多
关键词 CHAOTIC THEORY Least squareS Support vector machine (LSSVM) Power Quality STEADY State Index Phase Space Reconstruction Particle SWARM Optimization
下载PDF
Least-Square Support Vector Machine and Wavelet Selection for Hearing Loss Identification 被引量:2
16
作者 Chaosheng Tang Deepak Ranjan Nayak Shuihua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期299-313,共15页
Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provid... Hearing loss(HL)is a kind of common illness,which can significantly reduce the quality of life.For example,HL often results in mishearing,misunderstanding,and communication problems.Therefore,it is necessary to provide early diagnosis and timely treatment for HL.This study investigated the advantages and disadvantages of three classical machine learning methods:multilayer perceptron(MLP),support vector machine(SVM),and least-square support vector machine(LS-SVM)approach andmade a further optimization of the LS-SVM model via wavelet entropy.The investigation illustrated that themultilayer perceptron is a shallowneural network,while the least square support vector machine uses hinge loss function and least-square optimizationmethod.Besides,a wavelet selection method was proposed,and we found db4 can achieve the best results.The experiments showed that the LS-SVM method can identify the hearing loss disease with an overall accuracy of three classes as 84.89±1.77,which is superior to SVM andMLP.The results show that the least-square support vector machine is effective in hearing loss identification. 展开更多
关键词 Hearing loss wavelet entropy multilayer perceptron least square support vector machine
下载PDF
Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine 被引量:5
17
作者 Sananda Kundu Deepak Khare Arun Mondal 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第3期583-596,共14页
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a k... Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ETo is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ETo have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ETo and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ETo. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ETo in some decades. Two peaks of the increase are observed in ETo in the April-May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management. 展开更多
关键词 Rainfall Temperature Reference evapotranspiration (ETo) Downscaling Least square Support vector machine (LS-SVM)
下载PDF
Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions 被引量:11
18
作者 高栗 李夕兵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期290-295,共6页
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu... Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one. 展开更多
关键词 tunnel boring machine(TBM) performance prediction rate of penetration(ROP) support vector machine(SVM) partial least squares(PLS)
下载PDF
Nonlinear correction of photoelectric displacement sensor based on least square support vector machine 被引量:1
19
作者 郭杰荣 何怡刚 刘长青 《Journal of Central South University》 SCIE EI CAS 2011年第5期1614-1618,共5页
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a... A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor. 展开更多
关键词 least square support vector machine POSITION photoelectric displacement sensor nonlinear correct
下载PDF
Least Squares Support Vector Machine Based Real-Time Fault Diagnosis Model for Gas Path Parameters of Aero Engines 被引量:1
20
作者 王旭辉 黄圣国 +2 位作者 王烨 刘永建 舒平 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期22-26,共5页
Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern sear... Least squares support vector machine (LS-SVM) is applied in gas path fault diagnosis for aero engines. Firstly, the deviation data of engine cruise are analyzed. Then, model selection is conducted using pattern search method. Finally, by decoding aircraft communication addressing and reporting system (ACARS) report, a real-time cruise data set is acquired, and the diagnosis model is adopted to process data. In contrast to the radial basis function (RBF) neutral network, LS-SVM is more suitable for real-time diagnosis of gas turbine engine. 展开更多
关键词 Engine diagnosis Gas path Least squares support vector machine Pattern search
下载PDF
上一页 1 2 177 下一页 到第
使用帮助 返回顶部