Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input...Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.展开更多
Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a k...Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ETo is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ETo have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ETo and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ETo. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ETo in some decades. Two peaks of the increase are observed in ETo in the April-May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management.展开更多
Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a s...Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem.展开更多
This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existin...This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification.展开更多
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu...In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.展开更多
A method which adopts the combination of least squares support vector machine(LS-SVM) and Monte Carlo(MC) simulation is used to calculate the foundation settlement reliability.When using LS-SVM,choosing the traini...A method which adopts the combination of least squares support vector machine(LS-SVM) and Monte Carlo(MC) simulation is used to calculate the foundation settlement reliability.When using LS-SVM,choosing the training dataset and the values for LS-SVM parameters is the key.In a representative sense,the orthogonal experimental design with four factors and five levels is used to choose the inputs of the training dataset,and the outputs are calculated by using fast Lagrangian analysis continua(FLAC).The decimal ant colony algorithm(DACA) is also used to determine the parameters.Calculation results show that the values of the two parameters,and δ2 have great effect on the performance of LS-SVM.After the training of LS-SVM,the inputs are sampled according to the probabilistic distribution,and the outputs are predicted with the trained LS-SVM,thus the reliability analysis can be performed by the MC method.A program compiled by Matlab is employed to calculate its reliability.Results show that the method of combining LS-SVM and MC simulation is applicable to the reliability analysis of soft foundation settlement.展开更多
提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练...提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练结果泛化能力强,计算方法简单迅速.
Abstract:
A technique based on the robust least squares support vector machines(LS-SVM) used for control charts pattern recognition is proposed, the applied feasibility and validity of this technique in process quality diagnosis is also investigated. Theoretical research and experimental results show that this approach performs well upon the six typical control charts pattern recognition with high recognition accuracy, simple computation and fast training process, and the preeminent generalization ability on the condition of small sample size.展开更多
For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machin...For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability.展开更多
This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be co...This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be controlled efficiently. First, the output voltage of an MCFC stack is identified by a least squares support vector machine (LS-SVM) method with radial basis function (RBF) kernel so as to implement nonlinear predictive control. And then, the optimal control sequences are obtained by applying genetic algorithm (GA). The model and controller have been realized in the MATLAB environment. Simulation results indicated that the proposed controller exhibits satisfying control effect.展开更多
Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel base...Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.展开更多
The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms sig...The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, there were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors were constructed from wavelet packet log-energy entropy of different nodes. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances.展开更多
In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support ve...In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support vector machine(LS-SVM)was proposed.Firstly,bilateral filter was used to filter the RGB channels image respectively to eliminate noise.Then the pixel-level color feature and texture feature of the image,which was used as input of LS-SVM model(classifier)and SVM model(classifier),were extracted via RGB value of image and gray level co-occurrence matrix.Finally,the color image was segmented with the trained LS-SVM model(classifier)and SVM model(classifier)separately.The experimental results showed that the trained LS-SVM model and SVM model could effectively segment the images of the Hangzhou white chrysanthemums from complicated background taken under three illumination conditions such as front-lighting,back-lighting and overshadow,with the accuracy of above 90%.When segmenting an image,the SVM algorithm required 1.3 s,while the LS-SVM algorithm proposed in this paper just needed 0.7 s,which was better than the SVM algorithm obviously.The picking experiment was carried out and the results showed that the implementation of the proposed segmentation algorithm on the picking robot could achieve 81%picking success rate.展开更多
Near-infrared (NIR) transmittance spectroscopy combined with least-squares support vector machine (LS-SVM) was investigated to study the quality change of tomato juice during the storage. A total of 100 tomato juice s...Near-infrared (NIR) transmittance spectroscopy combined with least-squares support vector machine (LS-SVM) was investigated to study the quality change of tomato juice during the storage. A total of 100 tomato juice samples were used. The spectrum of each tomato juice was collected twice: the first measurement was taken when the tomato juice was fresh and had not undergone any changes, and the second measurement was taken after a month. Principal component analysis (PCA) was used to examine a potential capability of separating juice before and after the storage. The soluble solid content (SSC) and pH of the juice samples were determined. The results show that changes in certain compounds between tomato juice before and after the storage period were obvious. An excellent precision was achieved by LS-SVM model compared with discriminant partial least-squares (DPLS), soft independent modeling of class analogy (SIMCA), and discriminant analysis (DA) models, with 100% of a total accuracy. It can be found that NIR spectroscopy coupled with LS-SVM, DPLS, SIMCA, and DA can be used to control the quality change of tomato juice during the storage.展开更多
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ...TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.展开更多
提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神...提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力.
Abstract:
A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method.展开更多
基金Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of ChinaProject(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
文摘Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.
基金the University Grant Commission(UGC) for providing financial assistance in this research
文摘Climate change affects the environment and natural resources immensely. Rainfall, temperature and evapotranspiration are major parameters of climate affecting changes in the environment. Evapotrans- piration plays a key role in crop production and water balance of a region, one of the major parameters affected by climate change. The reference evapotranspiration or ETo is a calculated parameter used in this research. In the present study, changes in the future rainfall, minimum and maximum temperature, and ETo have been shown by downscaling the HadCM3 (Hadley Centre Coupled Model version 3) model data. The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India. The downscaled outputs of projected rainfall, ETo and temperatures have been shown for the 21st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine (LS-SVM) model. The efficiency of the LS-SVM model was measured by different statistical methods. The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature. Results showed an increase in the future rainfall, temperatures and ETo. The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May. Highest increase is projected in the 2080s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations. Winter maximum temperature has been observed to have increased in the future. High rainfall is also observed with higher ETo in some decades. Two peaks of the increase are observed in ETo in the April-May and in the October. Variation in these parameters due to climate change might have an impact on the future water resource of the study area, which is mainly an agricultural based region, and will help in proper planning and management.
基金Project supported by the National Science Fund for OutstandingYouth Overseas (No. 40328001) and the Key Research Plan of theKnowledge Innovation Project of the Institute of Geographic Sciencesand Natural Resources, Chinese Academy of Sciences (No.KZCXI-SW-01)
文摘Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem.
基金Project (No. 2005CB724303) supported by the National Basic Re-search Program (973) of China
文摘This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification.
基金National Natural Science Foundation of China(No.61663021)Science and Technology Support Project of Gansu Province(No.1304GKCA023)Scientific Research Project in University of Gansu Province(No.2017A-025)
文摘In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future.
文摘A method which adopts the combination of least squares support vector machine(LS-SVM) and Monte Carlo(MC) simulation is used to calculate the foundation settlement reliability.When using LS-SVM,choosing the training dataset and the values for LS-SVM parameters is the key.In a representative sense,the orthogonal experimental design with four factors and five levels is used to choose the inputs of the training dataset,and the outputs are calculated by using fast Lagrangian analysis continua(FLAC).The decimal ant colony algorithm(DACA) is also used to determine the parameters.Calculation results show that the values of the two parameters,and δ2 have great effect on the performance of LS-SVM.After the training of LS-SVM,the inputs are sampled according to the probabilistic distribution,and the outputs are predicted with the trained LS-SVM,thus the reliability analysis can be performed by the MC method.A program compiled by Matlab is employed to calculate its reliability.Results show that the method of combining LS-SVM and MC simulation is applicable to the reliability analysis of soft foundation settlement.
文摘提出一种基于鲁棒最小二乘支持向量机(LS-SVM)的控制图模式识别方法,并研究其应用于过程质量诊断的可行性、有效性.理论研究和仿真试验结果表明,该方法对于标准的6种控制图模式都具有很高的模式识别率,训练模式识别器所需样本少,且训练结果泛化能力强,计算方法简单迅速.
Abstract:
A technique based on the robust least squares support vector machines(LS-SVM) used for control charts pattern recognition is proposed, the applied feasibility and validity of this technique in process quality diagnosis is also investigated. Theoretical research and experimental results show that this approach performs well upon the six typical control charts pattern recognition with high recognition accuracy, simple computation and fast training process, and the preeminent generalization ability on the condition of small sample size.
文摘For the deficiency that the traditional single forecast methods could not forecast electronic equipment states, a combined forecast method based on the hidden Markov model(HMM) and least square support vector machine(LS-SVM) is presented. The multi-agent genetic algorithm(MAGA) is used to estimate parameters of HMM to overcome the problem that the Baum-Welch algorithm is easy to fall into local optimal solution. The state condition probability is introduced into the HMM modeling process to reduce the effect of uncertain factors. MAGA is used to estimate parameters of LS-SVM. Moreover, pruning algorithms are used to estimate parameters to get the sparse approximation of LS-SVM so as to increase the ranging performance. On the basis of these, the combined forecast model of electronic equipment states is established. The example results show the superiority of the combined forecast model in terms of forecast precision,calculation speed and stability.
基金Project (No. 2003 AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be controlled efficiently. First, the output voltage of an MCFC stack is identified by a least squares support vector machine (LS-SVM) method with radial basis function (RBF) kernel so as to implement nonlinear predictive control. And then, the optimal control sequences are obtained by applying genetic algorithm (GA). The model and controller have been realized in the MATLAB environment. Simulation results indicated that the proposed controller exhibits satisfying control effect.
文摘Support Vector Machine (SVM) is a powerful methodology for solving problems in non-linear classification, function estimation and density estimation, which has also led to many other recent developments in kernel based methods in general. This paper presents a highaccuracy and fault-tolerant SVM for the mobile geo-location problem, which is an important component of pervasive computing. Simulation results show its basic location performance, and illustrate impacts of the number of training samples and training area on test location error.
文摘The power quality (PQ) signals are traditionally analyzed in the time-domain by skilled engineers. However, PQ disturbances may not always be obvious in the original time-domain signal. Fourier analysis transforms signals into frequency domain, but has the disadvantage that time characteristics will become unobvious. Wavelet analysis, which provides both time and frequency information, can overcome this limitation. In this paper, there were two stages in analyzing PQ signals: feature extraction and disturbances classification. To extract features from PQ signals, wavelet packet transform (WPT) was first applied and feature vectors were constructed from wavelet packet log-energy entropy of different nodes. Least square support vector machines (LS-SVM) was applied to these feature vectors to classify PQ disturbances. Simulation results show that the proposed method possesses high recognition rate, so it is suitable to the monitoring and classifying system for PQ disturbances.
基金This work was financially supported by the project of National Science and Technology Supporting Plan(2015BAF01B02)the Open Foundation of Intelligent Robots and Systems at the University of Beijing Institute of Technology,High-tech Innovation Center(2016IRS03).
文摘In order to realize the visual positioning for Hangzhou white chrysanthemums harvesting robot in natural environment,a color image segmentation method for Hangzhou white chrysanthemum based on least squares support vector machine(LS-SVM)was proposed.Firstly,bilateral filter was used to filter the RGB channels image respectively to eliminate noise.Then the pixel-level color feature and texture feature of the image,which was used as input of LS-SVM model(classifier)and SVM model(classifier),were extracted via RGB value of image and gray level co-occurrence matrix.Finally,the color image was segmented with the trained LS-SVM model(classifier)and SVM model(classifier)separately.The experimental results showed that the trained LS-SVM model and SVM model could effectively segment the images of the Hangzhou white chrysanthemums from complicated background taken under three illumination conditions such as front-lighting,back-lighting and overshadow,with the accuracy of above 90%.When segmenting an image,the SVM algorithm required 1.3 s,while the LS-SVM algorithm proposed in this paper just needed 0.7 s,which was better than the SVM algorithm obviously.The picking experiment was carried out and the results showed that the implementation of the proposed segmentation algorithm on the picking robot could achieve 81%picking success rate.
基金Project supported by the National Natural Science Foundation of China (No. 30825027)the National Key Technology R&D Pro-gram (No. 2006BAD11A12) of China
文摘Near-infrared (NIR) transmittance spectroscopy combined with least-squares support vector machine (LS-SVM) was investigated to study the quality change of tomato juice during the storage. A total of 100 tomato juice samples were used. The spectrum of each tomato juice was collected twice: the first measurement was taken when the tomato juice was fresh and had not undergone any changes, and the second measurement was taken after a month. Principal component analysis (PCA) was used to examine a potential capability of separating juice before and after the storage. The soluble solid content (SSC) and pH of the juice samples were determined. The results show that changes in certain compounds between tomato juice before and after the storage period were obvious. An excellent precision was achieved by LS-SVM model compared with discriminant partial least-squares (DPLS), soft independent modeling of class analogy (SIMCA), and discriminant analysis (DA) models, with 100% of a total accuracy. It can be found that NIR spectroscopy coupled with LS-SVM, DPLS, SIMCA, and DA can be used to control the quality change of tomato juice during the storage.
文摘TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.
文摘提出了一种基于最小二乘支持向量机的织物剪切性能预测模型,并且采用遗传算法进行最小二乘支持向量机的参数优化,将获得的样本进行归一化处理后,将其输入预测模型以得到预测结果.仿真结果表明,基于最小二乘支持向量机的预测模型比BP神经网络和线性回归方法具有更高的精度和范化能力.
Abstract:
A new method is proposed to predict the fabric shearing property with least square support vector machines ( LS-SVM ). The genetic algorithm is investigated to select the parameters of LS-SVM models as a means of improving the LS- SVM prediction. After normalizing the sampling data, the sampling data are inputted into the model to gain the prediction result. The simulation results show the prediction model gives better forecasting accuracy and generalization ability than BP neural network and linear regression method.