In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w...In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten...A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation techn...This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...展开更多
In this paper,by me as of beundary element method,we try to deal with the initial -boundary value problem for a class of linear parunolic equations,which is a linear heat conduction equation. We tresent a boundary int...In this paper,by me as of beundary element method,we try to deal with the initial -boundary value problem for a class of linear parunolic equations,which is a linear heat conduction equation. We tresent a boundary integral equation for the solution to the problem and its variational formalation The well-posedness of the variational formulation is proved. And the error estimates for the approsutate solutions are provided. The results of this paper are more general than those of[1]展开更多
In this paper, the necessary theoretical analysis for the approximation boundary element method to solve dynamical response of viscoelastic thin plate presented in [1] is.discussed. The theorem of existence and uniq...In this paper, the necessary theoretical analysis for the approximation boundary element method to solve dynamical response of viscoelastic thin plate presented in [1] is.discussed. The theorem of existence and uniqueness of the approximate solution andthe error estimation are also obtained. Based on these conclusions , the principle forchoosing the mesh size and the number of truncated terms in the fundamental solution are given. It isshown that the theoretical ana analysis in this paper are consistent with thenumerical results in [1].展开更多
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.T...The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.The procedure contains two parts,i.e.,the code verification and the accuracy analysis.The code verification provides the confidence that the code used is free of mistakes,and the accuracy analysis gives the order of accuracy of the immersed boundary method.The method of manufactured solutions is taken as a means for both parts.In the first part,the numerical code employs a second-order discretization scheme,i.e.,it has second-order accuracy in theory.It matches the calculated order of accuracy obtained in the numerical calculation for all variables.This means that the code contains no mistake,which is a premise of the subsequent work.The second part introduces a jump in the manufactured solution for the pressure and adds the corresponding singular forcing terms in the momentum equations.By analyzing the discretization errors,the accuracy of the immersed boundary method is proven to be first order even though the discretization scheme is second order.It has been found that the coarser mesh may not be sensitive enough to capture the influence of the immersed boundary,and the refinement on the Lagrangian markers barely has any effect on the numerical calculation.展开更多
The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and ex...The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.A kind of characteristic finite difference schemes is put forward,from which optimal order estimates in l~2 norm are derived for the error in the approximate solutions.The research is important both theoretically and practically for the model analysis in the field,the model numerical method and software development.展开更多
The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estima...The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.展开更多
As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-nets...As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.展开更多
In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems ...In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.展开更多
This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure d...This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength.展开更多
The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational eval...The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For the twodimensional bounded region, the upwind finite difference schemes are proposed. Some techniques, such as the calculus of variations, the change of variables, and the theory of a priori estimates, are used. The optimal orderl2-norm estimates are derived for the errors in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method, and the software development.展开更多
In this paper, the positional error curve of point features was extended to an error curves band of line segment features. Firstly, the constitution and shape of the error curves band were analyzed. On this basis, the...In this paper, the positional error curve of point features was extended to an error curves band of line segment features. Firstly, the constitution and shape of the error curves band were analyzed. On this basis, the general boundary curve formula of that band was derived. Secondly, the visualizing error curves bands were realized through three exam- ples. Finally,area index has been examined by comparing numerical results from error curves band and error ellipes band.展开更多
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh...In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.展开更多
This paper proposes a low-complexity spatial-domain Error Concealment (EC) algorithm for recovering consecutive blocks error in still images or Intra-coded (I) frames of video sequences. The proposed algorithm works w...This paper proposes a low-complexity spatial-domain Error Concealment (EC) algorithm for recovering consecutive blocks error in still images or Intra-coded (I) frames of video sequences. The proposed algorithm works with the following steps. Firstly the Sobel operator is performed on the top and bottom adjacent pixels to detect the most likely edge direction of current block area. After that one-Dimensional (1D) matching is used on the available block boundaries. Displacement between edge direction candidate and most likely edge direction is taken into consideration as an important factor to improve stability of 1D boundary matching. Then the corrupted pixels are recovered by linear weighting interpolation along the estimated edge direction. Finally the interpolated values are merged to get last recovered picture. Simulation results demonstrate that the proposed algorithms obtain good subjective quality and higher Peak Signal-to-Noise Ratio (PSNR) than the methods in literatures for most images.展开更多
In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions a...In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions and the error estimations are also given.展开更多
To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE met...To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.展开更多
Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet ...Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.展开更多
基金The Project was supported by National Natural Science Foundation of China
文摘In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52271276,52271319,and 52201364)the Natural Science Foundation of Jiangsu Province (Grant No.BK20201006)。
文摘A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金supported by the NSF China#10571075NSF-Guangdong China#04010473+1 种基金The research of the second author was supported by Jinan University Foundation#51204033the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State education Ministry#2005-383
文摘This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...
文摘In this paper,by me as of beundary element method,we try to deal with the initial -boundary value problem for a class of linear parunolic equations,which is a linear heat conduction equation. We tresent a boundary integral equation for the solution to the problem and its variational formalation The well-posedness of the variational formulation is proved. And the error estimates for the approsutate solutions are provided. The results of this paper are more general than those of[1]
文摘In this paper, the necessary theoretical analysis for the approximation boundary element method to solve dynamical response of viscoelastic thin plate presented in [1] is.discussed. The theorem of existence and uniqueness of the approximate solution andthe error estimation are also obtained. Based on these conclusions , the principle forchoosing the mesh size and the number of truncated terms in the fundamental solution are given. It isshown that the theoretical ana analysis in this paper are consistent with thenumerical results in [1].
基金supported by the National Natural Science Foundation of China (No 10472070)
文摘The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.The procedure contains two parts,i.e.,the code verification and the accuracy analysis.The code verification provides the confidence that the code used is free of mistakes,and the accuracy analysis gives the order of accuracy of the immersed boundary method.The method of manufactured solutions is taken as a means for both parts.In the first part,the numerical code employs a second-order discretization scheme,i.e.,it has second-order accuracy in theory.It matches the calculated order of accuracy obtained in the numerical calculation for all variables.This means that the code contains no mistake,which is a premise of the subsequent work.The second part introduces a jump in the manufactured solution for the pressure and adds the corresponding singular forcing terms in the momentum equations.By analyzing the discretization errors,the accuracy of the immersed boundary method is proven to be first order even though the discretization scheme is second order.It has been found that the coarser mesh may not be sensitive enough to capture the influence of the immersed boundary,and the refinement on the Lagrangian markers barely has any effect on the numerical calculation.
基金the Major State Basic Research Program of China(No.G19990328)the National Tackling Key Problem Program(No.20050200069)+1 种基金the National Natural Science Foundation of China(Nos.10771124,10372052)the Ph.D.Programs Foundation of Ministry of Education of China(No.20030422047)
文摘The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.A kind of characteristic finite difference schemes is put forward,from which optimal order estimates in l~2 norm are derived for the error in the approximate solutions.The research is important both theoretically and practically for the model analysis in the field,the model numerical method and software development.
基金supported by the Tsinghua University 2021 Doctoral Summer Projectsupported by the National Key R&D Program of China (No. 2018YFE0301102)National Natural Science Foundation of China (Nos. 11875020 and 11875023)。
文摘The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.
基金supported by the Aeronautical Science Foundation of China (No.20200016112001)。
文摘As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.
文摘In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.
文摘This paper combines the perturbation theory with the boundary element methodfor contact problems of three-dimensional elasticity mechanism to analyse the effect oferrors on the shape of the contact area and pressure distribution in gear drive through theperturbation of a cubic order geometry,there by greatly bringing down both computationwork volume and cost and providing a powerful tool for engineering study on the effectof errors on structural strength.
基金supported by the Major State Basic Research Development Program of China(No.G19990328)the National Key Technologies R&D Program of China (No.20050200069)+1 种基金the National Natural Science Foundation of China (Nos.10771124 and 10372052)the Ph. D. Pro-grams Foundation of Ministry of Education of China (No.20030422047)
文摘The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For the twodimensional bounded region, the upwind finite difference schemes are proposed. Some techniques, such as the calculus of variations, the change of variables, and the theory of a priori estimates, are used. The optimal orderl2-norm estimates are derived for the errors in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method, and the software development.
基金Project Supported by the National Natural Science Foundation of China (No.49801016 and 49671063)
文摘In this paper, the positional error curve of point features was extended to an error curves band of line segment features. Firstly, the constitution and shape of the error curves band were analyzed. On this basis, the general boundary curve formula of that band was derived. Secondly, the visualizing error curves bands were realized through three exam- ples. Finally,area index has been examined by comparing numerical results from error curves band and error ellipes band.
基金supported partially by the innovation fund of Shanghai Normal Universitysupported partially by NSERC of Canada under Grant OGP0046726.
文摘In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.
基金Supported by Doctor’s Foundation in Natural Science of Hebei Province of China (No.B2004129).
文摘This paper proposes a low-complexity spatial-domain Error Concealment (EC) algorithm for recovering consecutive blocks error in still images or Intra-coded (I) frames of video sequences. The proposed algorithm works with the following steps. Firstly the Sobel operator is performed on the top and bottom adjacent pixels to detect the most likely edge direction of current block area. After that one-Dimensional (1D) matching is used on the available block boundaries. Displacement between edge direction candidate and most likely edge direction is taken into consideration as an important factor to improve stability of 1D boundary matching. Then the corrupted pixels are recovered by linear weighting interpolation along the estimated edge direction. Finally the interpolated values are merged to get last recovered picture. Simulation results demonstrate that the proposed algorithms obtain good subjective quality and higher Peak Signal-to-Noise Ratio (PSNR) than the methods in literatures for most images.
文摘In this paper, we apply the iterative technology to establish the existence of solutions for a fractional boundary value problem with q-difference. Explicit iterative sequences are given to approxinate the solutions and the error estimations are also given.
基金Project supported by the National Natural Science Foundation of China(Grant No.51025622)
文摘To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.
基金the National Natural Science Foundation of China (Nos.11571238,11601332,91130014,11471312 and 91430216).
文摘Generalized Jacobi polynomials with indexes α,β∈ R are introduced and some basic properties are established. As examples of applications,the second- and fourth-order elliptic boundary value problems with Dirichlet or Robin boundary conditions are considered,and the generalized Jacobi spectral schemes are proposed. For the diagonalization of discrete systems,the Jacobi-Sobolev orthogonal basis functions are constructed,which allow the exact solutions and the approximate solutions to be represented in the forms of infinite and truncated Jacobi series. Error estimates are obtained and numerical results are provided to illustrate the effectiveness and the spectral accuracy.