A class of second-order differential equations commonly arising in physics applications are considered,and their explicit hypergeometric solutions are provided. Further, the relationship with the Generalized and Unive...A class of second-order differential equations commonly arising in physics applications are considered,and their explicit hypergeometric solutions are provided. Further, the relationship with the Generalized and Universal Associated Legendre Equations are examined and established. The hypergeometric solutions, presented in this work,will promote future investigations of their mathematical properties and applications to problems in theoretical physics.展开更多
A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are inv...A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are investigated. Numerical results are also presented, which show the high accuracy. The technique in the theoretical analysis provides a framework for Legendre pseudospectral approximation of nonlinear multi-dimensional problems.展开更多
基金Supported of Natural Sciences and Engineering Research Council of Canada under Grant No.GP249507
文摘A class of second-order differential equations commonly arising in physics applications are considered,and their explicit hypergeometric solutions are provided. Further, the relationship with the Generalized and Universal Associated Legendre Equations are examined and established. The hypergeometric solutions, presented in this work,will promote future investigations of their mathematical properties and applications to problems in theoretical physics.
文摘A Legendre pseudospectral scheme is proposed for solving initial-boundary value problem of nonlinear Klein-Gordon equation. The numerical solution keeps the discrete conservation. Its stability and convergence are investigated. Numerical results are also presented, which show the high accuracy. The technique in the theoretical analysis provides a framework for Legendre pseudospectral approximation of nonlinear multi-dimensional problems.