Understanding the distribution,dispersal,and correlation of modern pollen with vegetation in mountainous regions is essential for establishing accurate modern analogs for fossil pollen records.This study,conducted in ...Understanding the distribution,dispersal,and correlation of modern pollen with vegetation in mountainous regions is essential for establishing accurate modern analogs for fossil pollen records.This study,conducted in Leigong Mountain on the YunnanGuizhou Plateau of southwestern China,involved the collection of 35 surface soil samples from diverse vegetation communities along an elevational gradient ranging from 1210 to 1875 meters.The results reveal a close correspondence between modern pollen assemblages and vegetation zones.Principal Component Analysis(PCA)results indicate that pollen assemblages can effectively distinguish between subtropical montane evergreen broad-leaved forest(SEBF)and subtropical montane deciduous broadleaved forest(SDBF).However,both SEBF and SDBF show significant overlap with subtropical montane evergreen-deciduous broad-leaved mixed forest(SEMF).Detrended Correspondence Analysis(DCA)results clearly distinguish the three vegetation zones,and the first axis of DCA shows a significant positive correlation with elevation(p<0.01,R=0.48).Discriminant Analysis(DA)successfully assigns 94.4%of the modern pollen samples to their respective vegetation zones.Pollen taxa such as Impatiens,Astertype,and Rosaceae exhibit significant indicative capabilities for the SEBF zone,effectively distinguishing this vegetation zone from others.Pinus and Alnus display overrepresentation in the Leigong Mountain region,while Quercus(D,deciduous-type)and Poaceae exhibit high representation in the SEBF zone.In the SEBF zone,both pollen diversity and richness are the lowest.Our study reveals the complex relationship between the richness and diversity of pollen and vegetation.The diversity and richness of tree and shrub pollen are found to be lower than those of the corresponding plants.The pollen-vegetation relationship elucidated in this study serves as a critical reference for reconstructing ancient environments from fossil pollen retrieved in this region.展开更多
[Objectives]To understand the species composition and diversity of Fagus longipetiolata community.[Methods]The F.longipetiolata community in Guizhou Province was investigated by typical plot method.[Results]There were...[Objectives]To understand the species composition and diversity of Fagus longipetiolata community.[Methods]The F.longipetiolata community in Guizhou Province was investigated by typical plot method.[Results]There were 107 species of vascular plants belonging to 79 genera and 51 families in Leigong Mountain F.longipetiolata community,including 3 species of pteridophytes belonging to 3 genera and 3 families,104 species of spermatophytes belonging to 76 genera and 48 families,including 3 species of gymnosperms belonging to 3 genera and 3 families,and 101 species of angiosperms belonging to 73 genera and 45 families.The types of Leigong Mountain F.longipetiolata community were divided into 7 formations,and the top 10 important species of each formation were Fagaceae,followed by Lauraceae and Ericaceae.The change trend of tree layer richness index was formation I>formation IV>formation VI>formation III>formation VII>formation II>formation V;the dominance index was formation I>formation IV>formation V>formation VI>formation VII>formation III>formation II;H diversity index was formation V>formation II>formation I>formation III>formation VII>formation VI>formation IV;the evenness index is formation II>formation III>formation VI>formation VII>formation IV>formation I>formation V;the total diversity index of the community,formation I(3.67)was the highest,formation V(2.74)was the lowest,manifested as formation I>formation III>formation VI>formation II>formation IV>formation VII>formation V.[Conclusions]The community stability is closely related to its species composition,and the background species is the basis for the survival of the community;the existence of rare species can further enhance the community diversity index and enhance the community stability.展开更多
基金supported by the National Natural Science Foundation of China(grant numbers 42171157,42107475 and 41907379)College Students'Innovation and Entrepreneurship Program of Nantong University,and Foundation of Hunan Province(2023JJ40099 and 23B0678)。
文摘Understanding the distribution,dispersal,and correlation of modern pollen with vegetation in mountainous regions is essential for establishing accurate modern analogs for fossil pollen records.This study,conducted in Leigong Mountain on the YunnanGuizhou Plateau of southwestern China,involved the collection of 35 surface soil samples from diverse vegetation communities along an elevational gradient ranging from 1210 to 1875 meters.The results reveal a close correspondence between modern pollen assemblages and vegetation zones.Principal Component Analysis(PCA)results indicate that pollen assemblages can effectively distinguish between subtropical montane evergreen broad-leaved forest(SEBF)and subtropical montane deciduous broadleaved forest(SDBF).However,both SEBF and SDBF show significant overlap with subtropical montane evergreen-deciduous broad-leaved mixed forest(SEMF).Detrended Correspondence Analysis(DCA)results clearly distinguish the three vegetation zones,and the first axis of DCA shows a significant positive correlation with elevation(p<0.01,R=0.48).Discriminant Analysis(DA)successfully assigns 94.4%of the modern pollen samples to their respective vegetation zones.Pollen taxa such as Impatiens,Astertype,and Rosaceae exhibit significant indicative capabilities for the SEBF zone,effectively distinguishing this vegetation zone from others.Pinus and Alnus display overrepresentation in the Leigong Mountain region,while Quercus(D,deciduous-type)and Poaceae exhibit high representation in the SEBF zone.In the SEBF zone,both pollen diversity and richness are the lowest.Our study reveals the complex relationship between the richness and diversity of pollen and vegetation.The diversity and richness of tree and shrub pollen are found to be lower than those of the corresponding plants.The pollen-vegetation relationship elucidated in this study serves as a critical reference for reconstructing ancient environments from fossil pollen retrieved in this region.
基金Supported by Benefit Monitoring of Natural Forest Resources Protection Project in Guizhou Province.
文摘[Objectives]To understand the species composition and diversity of Fagus longipetiolata community.[Methods]The F.longipetiolata community in Guizhou Province was investigated by typical plot method.[Results]There were 107 species of vascular plants belonging to 79 genera and 51 families in Leigong Mountain F.longipetiolata community,including 3 species of pteridophytes belonging to 3 genera and 3 families,104 species of spermatophytes belonging to 76 genera and 48 families,including 3 species of gymnosperms belonging to 3 genera and 3 families,and 101 species of angiosperms belonging to 73 genera and 45 families.The types of Leigong Mountain F.longipetiolata community were divided into 7 formations,and the top 10 important species of each formation were Fagaceae,followed by Lauraceae and Ericaceae.The change trend of tree layer richness index was formation I>formation IV>formation VI>formation III>formation VII>formation II>formation V;the dominance index was formation I>formation IV>formation V>formation VI>formation VII>formation III>formation II;H diversity index was formation V>formation II>formation I>formation III>formation VII>formation VI>formation IV;the evenness index is formation II>formation III>formation VI>formation VII>formation IV>formation I>formation V;the total diversity index of the community,formation I(3.67)was the highest,formation V(2.74)was the lowest,manifested as formation I>formation III>formation VI>formation II>formation IV>formation VII>formation V.[Conclusions]The community stability is closely related to its species composition,and the background species is the basis for the survival of the community;the existence of rare species can further enhance the community diversity index and enhance the community stability.