期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Gossypol acetic acid regulates leukemia stem cells by degrading LRPPRC via inhibiting IL-6/JAK1/STAT3 signaling or resulting mitochondrial dysfunction
1
作者 Cheng-Jin Ai Ling-Juan Chen +2 位作者 Li-Xuan Guo Ya-Ping Wang Zi-Yi Zhao 《World Journal of Stem Cells》 SCIE 2024年第4期444-458,共15页
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against... BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML. 展开更多
关键词 leukemia stem cells Gossypol acetic acid Reactive oxygen species Mitochondrial dysfunction Interleukin 6/janus kinase 1/signal transducer and activator of transcription 3 signaling
下载PDF
Molecular mechanisms for survival regulation of chronic myeloid leukemia stem cells 被引量:1
2
作者 Haojian Zhang Shaoguang Li 《Protein & Cell》 SCIE CSCD 2013年第3期186-196,共11页
Studies on chronic myeloid leukemia(CML)have served as a paradigm for cancer research and therapy.These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent de... Studies on chronic myeloid leukemia(CML)have served as a paradigm for cancer research and therapy.These studies involve the identifi cation of the fi rst cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors(TKIs)that inhibit BCR-ABL kinase activity in CML.It becomes clear that leukemia stem cells(LSCs)in CML which are resistant to TKIs,and eradication of LSCs appears to be extremely difficult.Therefore,one of the major issues in current CML biology is to understand the biology of LSCs and to investigate why LSCs are insensitive to TKI monotherapy for developing curative therapeutic strategies.Studies from our group and others have revealed that CML LSCs form a hierarchy similar to that seen in normal hematopoiesis,in which a rare stem cell population with limitless self-renewal potential gives rise to progenies that lack such potential.LSCs also possess biological features that are different from those of normal hematopoietic stem cells(HSCs)and are critical for their malignant characteristics.In this review,we summarize the latest progress in CML field,and attempt to understand the molecular mechanisms of survival regulation of LSCs. 展开更多
关键词 molecular mechanisms chronic myeloid leukemia leukemia stem cell
原文传递
Molecular mechanisms for stemness maintenance of acute myeloid leukemia stem cells
3
作者 Jiazhen Wang Peipei Wang +5 位作者 Tiantian Zhang Zhuying Gao Jing Wang Mengdie Feng Rong Yin Haojian Zhang 《Blood Science》 2019年第1期77-83,共7页
Human acute myeloid leukemia(AML)is a fatal hematologic malignancy characterized with accumulation of myeloid blasts and differentiation arrest.The development of AML is associated with a serial of genetic and epigene... Human acute myeloid leukemia(AML)is a fatal hematologic malignancy characterized with accumulation of myeloid blasts and differentiation arrest.The development of AML is associated with a serial of genetic and epigenetic alterations mainly occurred in hematopoietic stem and progenitor cells(HSPCs),which change HSPC state at the molecular and cellular levels and transform them into leukemia stem cells(LSCs).LSCs play critical roles in leukemia initiation,progression,and relapse,and need to be eradicated to achieve a cure in clinic.Key to successfully targeting LSCs is to fully understand the unique cellular and molecular mechanisms for maintaining their stemness.Here,we discuss LSCs in AML with a focus on identification of unique biological features of these stem cells to decipher the molecular mechanisms of LSC maintenance. 展开更多
关键词 Acute myeloid leukemia leukemia stem cell Maintenance Molecular mechanisms stemNESS
原文传递
Mobilization for peripheral blood stem cells of acute myelocytic leukemia by IL-11 combined with G-CSF
4
《中国输血杂志》 CAS CSCD 2001年第S1期416-,共1页
关键词 Mobilization for peripheral blood stem cells of acute myelocytic leukemia by IL-11 combined with G-CSF stem IL
下载PDF
Signaling pathways governing the behaviors of leukemia stem cells
5
作者 Shirin Azizidoost Ava Nasrolahi +4 位作者 Mohadeseh Sheykhi-Sabzehpoush Amir Anbiyaiee Seyed Esmaeil Khoshnam Maryam Farzaneh Shahab Uddin 《Genes & Diseases》 SCIE 2024年第2期830-846,共17页
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow.Although various treatment options have been used for different types of leukemia,understanding the molecular pathways invo... Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow.Although various treatment options have been used for different types of leukemia,understanding the molecular pathways involved in the development and progression of leukemia is necessary.Recent studies showed that leukemia stem cells(LSCs)play essential roles in the pathogenesis of leukemia by targeting several signaling pathways,including Notch,Wnt,Hedgehog,and STAT3.LSCs are highly proliferative cells that stimulate tumor initiation,migration,EMT,and drug resistance.This review summarizes cellular pathways that stimulate and prevent LSCs'self-renewal,metastasis,and tumorigenesis. 展开更多
关键词 leukemia leukemia stem cells Pathogenesis Signaling pathways stem cells
原文传递
HDAC I/IIb selective inhibitor Purinostat Mesylate combined with GLS1 inhibition effectively eliminates CML stem cells 被引量:1
6
作者 Qiang Qiu Linyu yang +16 位作者 Yunyu Feng Zejiang Zhu Ning Li Li Zheng Yuanyuan Sun Cong Pan Huandi Qiu Xue Cui Wei He Fang Wang Yuyao Yi Minghai Tang Zhuang Yang Yunfan Yang Zhihui Li Lijuan Chen Yiguo Hu 《Bioactive Materials》 SCIE CSCD 2023年第3期483-498,共16页
Purinostat Mesylate(PM)is a novel highly selective and active HDAC I/IIb inhibitor,and the injectable formulation of PM(PMF)based on the compound prescription containing cyclodextrin completely can overcome PM’s poor... Purinostat Mesylate(PM)is a novel highly selective and active HDAC I/IIb inhibitor,and the injectable formulation of PM(PMF)based on the compound prescription containing cyclodextrin completely can overcome PM’s poor solubility and improves its stability and pharmacokinetic properties.Here,we showed that PM effectively repressed the survival of Ph+leukemia cells and CD34+leukemia cells from CML patients in vitro.In vivo studies demonstrated that PMF significantly prevented BCR-ABL(T315I)induced CML progression by restraining leukemia stem cells(LSCs),which are insensitive to chemotherapy and responsible for CML relapse.Mechanism studies revealed that targeting HDAC I/IIb repressed several important factors for LSCs survival including c-Myc,β-Catenin,E2f,Ezh2,Alox5,and mTOR,as well as interrupted some critical biologic processes.Additionally,PMF increased glutamate metabolism in LSCs by increasing GLS1.The combination of PMF and glutaminase inhibitor BPTES synergistically eradicated LSCs by altering multiple key proteins and signaling pathways which are critical for LSC survival and self-renewal.Overall,our findings represent a new therapeutic strategy for eliminating LSCs by targeting HDAC I/IIb and glutaminolysis,which potentially provides a guidance for PMF clinical trials in the future for TKI resistance CML patients. 展开更多
关键词 Chronic myelogenous leukemia leukemia stem cell Selective HDAC I/IIb inhibitor GLS1 Mouse model
原文传递
CD34^(+)CD38^(-)subpopulation without CD123 and CD44 is responsible for LSC and correlated with imbalance of immune cell subsets in AML
7
作者 QIANSHAN TAO QING ZHANG +8 位作者 HUIPING WANG HAO XIAO MEI ZHOU LINLIN LIU HUI QIN JIYU WANG FURUN AN ZHIMIN ZHAI YI DONG 《BIOCELL》 SCIE 2022年第1期159-169,共11页
Acute myeloid leukemia(AML)is regarded as a stem cell disease.However,no one unique marker is expressed on leukemia stem cells(LSC)but not on leukemic blasts nor normal hematopoietic stem cells(HSC).CD34^(+)CD38^(-)wi... Acute myeloid leukemia(AML)is regarded as a stem cell disease.However,no one unique marker is expressed on leukemia stem cells(LSC)but not on leukemic blasts nor normal hematopoietic stem cells(HSC).CD34^(+)CD38^(-)with or without CD123 or CD44 subpopulations are immunophenotypically defined as putative LSC fractions in AML.Nevertheless,markers that can be effectively and simply held responsible for the intrinsical heterogeneity of LSC is still unclear.In the present study,we examined the frequency of three different LSC subtypes(CD34^(+)CD38^(-),CD34^(+)CD38^(-)CD123^(+),CD34^(+)CD38^(-)CD44^(+))in AML at diagnosis.We then validated their prognostic significance on the relevance of spectral features for diagnostic stratification,immune status,induction therapy response,treatment effect maintenance,and long^(-)term survival.In our findings,high proportions of the above three different LSC subtypes were all significantly characterized with low complete remission(CR)rate,high relapse/refractory rate,poor overall survival(OS),frequent FLT3^(-)ITD mutation,the high level of regulatory T cells(Treg)and monocytic myeloid^(-)derived suppressor cells(M^(-)MDSC).However,there was no significant statistical difference in all kinds of other clinical performance among the three different LSC groups.It was demonstrated that CD34^(+)CD38^(-)subpopulation without CD123 and CD44 might be held responsible for LSC and correlated with an imbalance of immune cell subsets in AML. 展开更多
关键词 Acute myeloid leukemia leukemia stem cells CD123 CD44 Immune cell subsets
下载PDF
Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia
8
作者 Priyanka Sharma Gautam Borthakur 《Cancer Drug Resistance》 2023年第3期567-589,共23页
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hemato... Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy;we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells. 展开更多
关键词 OXPHOS DHODH leukemia stem cells mesenchymal stromal cells IDH
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部