In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. ...In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.展开更多
Summary: Senescence is an important obstacle to cancer development. Engaging a senescent response may be an effective way to cure acute myeloid leukemia (AML). The aim of this study was to examine the effect of res...Summary: Senescence is an important obstacle to cancer development. Engaging a senescent response may be an effective way to cure acute myeloid leukemia (AML). The aim of this study was to examine the effect of resveratrol-downregulated phosphorylated liver kinase B1 (pLKB1) on the senescence of acute myeloid leukemia (AML) stem cells. The protein expressions of pLKB 1 and Sirtuin 1 (SIRT1), a regulator ofpLKB1, were measured in CD34+CD38-KGla cells treated with resveratrol (40 μmol/L) or not by Western blotting. Senescence-related factors were examined, including p21 mRNA tested by real-time PCR, cell morphology by senescence-associated β-galactosidase (SA-β-gal) staining, cell pro- liferation by MTT assay and cell cycle by flow cytometry. Besides, apoptosis was flow cytometrically determined. The results showed that pLKB1 was highly expressed in CD34+CD38- KGla cells, and resveratrol, which could downregulate pLKB1 through activation of SIRT1, induced senescence and apoptosis of CD34+CD38- KGla cells. It was concluded that resveratrol-downregulated pLKB1 is in- volved in the senescence of AML stem cells.展开更多
Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the clo...Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease. Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.展开更多
AIM To evaluate the importance of the CD34+CD38-cell population when compared to the CD34+CD38+/low and CD34+CD38+/high leukemic cell sub-populations and to determine its correlations with leukemia characteristics and...AIM To evaluate the importance of the CD34+CD38-cell population when compared to the CD34+CD38+/low and CD34+CD38+/high leukemic cell sub-populations and to determine its correlations with leukemia characteristics and known prognostic factors, as well as with response to therapy and survival.METHODS Two hundred bone marrow samples were obtained at diagnosis from 200 consecutive patients with newly diagnosed acute myeloid leukemia(AML) were studied between September 2008 and December 2010 at our Institution(Hematology Department, Lyon, France). The CD34/CD38 cell profile was analyzed by multiparameter flowcytometry approach using 8 C panels and FACS CANTO and Diva software(BD Bioscience).RESULTS We analyzed CD34 and CD38 expression in bone marrow samples of 200 AML patients at diagnosis, and investigated the prognostic value of the most immature CD34+CD38-population. Using a cut-off value of 1% of CD34+CD38-from total "bulk leukemic cells" we found that a high(> 1%) level of CD34+CD38-blasts at diagnosis was correlated with advanced age, adverse cytogenetics as well as with a lower rate of complete response after induction and shorter disease-free survival. In a multivariate analysis considering age, leukocytosis, the % of CD34+ blasts cells and the standardized cytogenetic and molecular risk subgroups, a percentage of CD34+CD38-leukemic cells > 1% was an independent predictor of DFS [HR = 2.8(1.02-7.73), P = 0.04] and OS [HR = 2.65(1.09-6.43), P = 0.03].CONCLUSION Taken together, these results show that a CD34/CD38 "backbone" for leukemic cell analysis by multicolour flowcytometry at diagnosis provides useful prognostic information.展开更多
Spurred by better understanding of disease biology,improvements in molecular diagnostics,and the development of targeted therapies,the treatment of acute myeloid leukemia(AML)has undergone significant evolution in rec...Spurred by better understanding of disease biology,improvements in molecular diagnostics,and the development of targeted therapies,the treatment of acute myeloid leukemia(AML)has undergone significant evolution in recent years.Arguably,the most exciting shift has come from the success of treatment with the B-cell lymphoma-2 inhibitor venetoclax.When given in combination with a hypomethylating agent or low dose cytarabine,venetoclax demonstrates high response rates,some of which are durable.In spite of this,relapses after venetoclax treatment are common,and much interest exists in elucidating the mechanisms of resistance to the drug.Alterations in leukemic stem cell metabolism have been identified as a possible escape route,and clinical trials focusing on targeting metabolism in AML are ongoing.This review article highlights current research regarding venetoclax treatment and resistance in AML with a focus on cellular metabolism.展开更多
Sunitinib is an orally administered, multi-target tyrosine kinase inhibitor that has been approved by the FDA for the treatment of renal cell carcinoma and imatinib resistant gastro-intestinal tumors. Anti-leukemic ac...Sunitinib is an orally administered, multi-target tyrosine kinase inhibitor that has been approved by the FDA for the treatment of renal cell carcinoma and imatinib resistant gastro-intestinal tumors. Anti-leukemic activity of sunitinib has been examined in early clinical trials with limited success. However, recent trials on acute myeloid leukemia (AML) patients carrying FLT3 mutations have shown promising results. Effects of sunitinib on leukemic clonogenic cells and potential leukemic stem cells have not been examined so far. We analyzed the anti-proliferative and apoptotic properties of sunitinib on AML-derived cell lines. We also tested the effect of sunitinib on AML patient derived clonogenic cells (AML-CFC), as well as flow-sorted potential leukemic progenitors. Peripheral blood or bone marrow samples were obtained from newly diagnosed AML patients and flow sorted for CD34+ CD133+ or ALDH+ cells. Umbilical cord blood derived CD34+ cells were used as normal controls. Sunitinib induced growth arrest and apoptosis in AML derived cell lines. In addition, 7 μM sunitinib induced 75% reduction of AML-CFC as compared to DMSO treated control (±6.79%;n = 4). In contrast, 7 μM sunitinib treatment of umbilical cord blood derived normal CD34+ cells showed 29% reduction in AML-CFC (±6.77%;n = 5). Treatment of ALDH+ cells sorted from 2 AML cases and CD34+ CD133+ cells from one patient showed reduction of AML-CFC on treatment with sunitinib. Our study highlighted a potent anti-proliferative and proapoptotic effect of sunitinib on AML cell lines, AML patient derived clonogenic cells and potential leukemic stem cells.展开更多
The Polycomb group protein Bmi1 is a constituent of the Polycomb repressive complex 1, and it is an important molecule for the regulation of the self-renewal of hematopoietic stem cells. In the field of clinical hemat...The Polycomb group protein Bmi1 is a constituent of the Polycomb repressive complex 1, and it is an important molecule for the regulation of the self-renewal of hematopoietic stem cells. In the field of clinical hematology, there are reports that the level of Bmi1 expression in blast cells is related to the prognosis of acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome. We investigated whether the level of Bmi1 expression in leukemic cells is related to the prognosis and the characteristics of childhood acute lymphoblastic leukemia. In all the leukemic blast cells, Bmi1 gene expression was lower value than that in normal B cells. There were no correlations between the level of Bmi1 gene expression in leukemic blast cells and other parameters, including prognosis. Here, we report that the level of Bmi1 expression in blast cells is not related to the prognosis of pediatric acute lymphoblastic leukemia.展开更多
Transplantation of human leukemic cells into severe combined immunodeficiency(SCID)mice has been attempted to study leukemogenesis and to develop therapeuticmodalities.Previous models,however,were limited in efficient...Transplantation of human leukemic cells into severe combined immunodeficiency(SCID)mice has been attempted to study leukemogenesis and to develop therapeuticmodalities.Previous models,however,were limited in efficient initiation orlong-term engraftment of leukemic cells following the transplantation of primaryhuman leukemic cells.The insufficient engraftment of primary leukemic cells couldbe caused by the residual innate immunity in CB-17/SCID or NOD/SCID mice.We展开更多
In acute myeloid leukemia(AML),a small cell population that contains stem cell features such as lack of differentiation,self-renewal potential,and drug resistance,can be identified.These so-called leukemic stem cells(...In acute myeloid leukemia(AML),a small cell population that contains stem cell features such as lack of differentiation,self-renewal potential,and drug resistance,can be identified.These so-called leukemic stem cells(LSCs)are thought to be responsible for relapse initiation after initial treatment leading to successful eradication of the bulk AML cell population.Since many studies have aimed to characterize and eliminate LSCs to prevent relapse and increase survival rates of patients,LSCs are one of the best characterized cancer stem cells.The specific elimination of LSCs,while sparing the healthy normal hematopoietic stem cells(HSCs),is one of the major challenges in the treatment of leukemia.This review focuses on several surface markers and intracellular transcription factors that can distinguish AML LSCs from HSCs and,therefore,specifically eliminate these stem cell-like leukemic cells.Moreover,previous and ongoing clinical trials of acute leukemia patients treated with therapies targeting these markers are discussed.In contrast to knowledge on LSCs in AML,insight into LSCs in acute lymphoid leukemia(ALL)is limited.This review therefore also addresses the latest insight into LSCs in ALL.展开更多
基金a grant from National Science Foundation for Distinguished Young Scholars of China (No. 30225038)
文摘In order to investigate the expression and functional role of HERG1 K+ channels in leukemic cells and leukemic stem cells (LSCs), RT-PCR was used to detect the HERG1 K+ channels expression in leukemic cells and LSCs. The functional role of HERG1 K+ channels in leukemic cell proliferation was measured by MTT assay, and cell cycle and apoptosis were analyzed by flow cy- tometry. The results showed that herg mRNA was expressed in CD34+/CD38-, CD123+ LSCs but not in circulating CD34+ cells. Herg mRNA was also up-regulated in leukemia cell lines K562 and HL60 as well as almost all the primary leukemic cells while not in normal peripheral blood mononuclear cells (PBMNCs) and the expression of herg mRNA was not associated with the clinical and cytoge- netic features of leukemia. In addition, leukemic cell proliferation was dramatically inhibited by HERG K+ channel special inhibitor E-4031. Moreover, E-4031 suppressed the cell growth by induc- ing a specific block at the G1/S transition phase of the cell cycle but had no effect on apoptosis in leukemic cells. The results suggested that HERG1 K+ channels could regulate leukemic cells prolif- eration and were necessary for leukemic cells to proceed with the cell cycle. HERG1 K+ channels may also have oncogenic potential and may be a biomarker for diagnosis of leukemia and a novel potential pharmacological target for leukemia therapy.
基金supported by grants from the National Natural Science Foundation of China(Nos.81370660,81170524)
文摘Summary: Senescence is an important obstacle to cancer development. Engaging a senescent response may be an effective way to cure acute myeloid leukemia (AML). The aim of this study was to examine the effect of resveratrol-downregulated phosphorylated liver kinase B1 (pLKB1) on the senescence of acute myeloid leukemia (AML) stem cells. The protein expressions of pLKB 1 and Sirtuin 1 (SIRT1), a regulator ofpLKB1, were measured in CD34+CD38-KGla cells treated with resveratrol (40 μmol/L) or not by Western blotting. Senescence-related factors were examined, including p21 mRNA tested by real-time PCR, cell morphology by senescence-associated β-galactosidase (SA-β-gal) staining, cell pro- liferation by MTT assay and cell cycle by flow cytometry. Besides, apoptosis was flow cytometrically determined. The results showed that pLKB1 was highly expressed in CD34+CD38- KGla cells, and resveratrol, which could downregulate pLKB1 through activation of SIRT1, induced senescence and apoptosis of CD34+CD38- KGla cells. It was concluded that resveratrol-downregulated pLKB1 is in- volved in the senescence of AML stem cells.
文摘Bone marrow microenvironment (BMM) is the main sanctuary of leukemic stem cells (LSCs) and protects these cells against conventional therapies. However, it may open up an opportunity to target LSCs by breaking the close connection between LSCs and the BMM. The elimination of LSCs is of high importance, since they follow cancer stem cell theory as a part of this population. Based on cancer stem cell theory, a cell with stem cell-like features stands at the apex of the hierarchy and produces a heterogeneous population and governs the disease. Secretion of cytokines, chemokines, and extracellular vesicles, whether through autocrine or paracrine mechanisms by activation of downstream signaling pathways in LSCs, favors their persistence and makes the BMM less hospitable for normal stem cells. While all details about the interactions of the BMM and LSCs remain to be elucidated, some clinical trials have been designed to limit these reciprocal interactions to cure leukemia more effectively. In this review, we focus on chronic myeloid leukemia and acute myeloid leukemia LSCs and their milieu in the bone marrow, how to segregate them from the normal compartment, and finally the possible ways to eliminate these cells.
文摘AIM To evaluate the importance of the CD34+CD38-cell population when compared to the CD34+CD38+/low and CD34+CD38+/high leukemic cell sub-populations and to determine its correlations with leukemia characteristics and known prognostic factors, as well as with response to therapy and survival.METHODS Two hundred bone marrow samples were obtained at diagnosis from 200 consecutive patients with newly diagnosed acute myeloid leukemia(AML) were studied between September 2008 and December 2010 at our Institution(Hematology Department, Lyon, France). The CD34/CD38 cell profile was analyzed by multiparameter flowcytometry approach using 8 C panels and FACS CANTO and Diva software(BD Bioscience).RESULTS We analyzed CD34 and CD38 expression in bone marrow samples of 200 AML patients at diagnosis, and investigated the prognostic value of the most immature CD34+CD38-population. Using a cut-off value of 1% of CD34+CD38-from total "bulk leukemic cells" we found that a high(> 1%) level of CD34+CD38-blasts at diagnosis was correlated with advanced age, adverse cytogenetics as well as with a lower rate of complete response after induction and shorter disease-free survival. In a multivariate analysis considering age, leukocytosis, the % of CD34+ blasts cells and the standardized cytogenetic and molecular risk subgroups, a percentage of CD34+CD38-leukemic cells > 1% was an independent predictor of DFS [HR = 2.8(1.02-7.73), P = 0.04] and OS [HR = 2.65(1.09-6.43), P = 0.03].CONCLUSION Taken together, these results show that a CD34/CD38 "backbone" for leukemic cell analysis by multicolour flowcytometry at diagnosis provides useful prognostic information.
文摘Spurred by better understanding of disease biology,improvements in molecular diagnostics,and the development of targeted therapies,the treatment of acute myeloid leukemia(AML)has undergone significant evolution in recent years.Arguably,the most exciting shift has come from the success of treatment with the B-cell lymphoma-2 inhibitor venetoclax.When given in combination with a hypomethylating agent or low dose cytarabine,venetoclax demonstrates high response rates,some of which are durable.In spite of this,relapses after venetoclax treatment are common,and much interest exists in elucidating the mechanisms of resistance to the drug.Alterations in leukemic stem cell metabolism have been identified as a possible escape route,and clinical trials focusing on targeting metabolism in AML are ongoing.This review article highlights current research regarding venetoclax treatment and resistance in AML with a focus on cellular metabolism.
文摘Sunitinib is an orally administered, multi-target tyrosine kinase inhibitor that has been approved by the FDA for the treatment of renal cell carcinoma and imatinib resistant gastro-intestinal tumors. Anti-leukemic activity of sunitinib has been examined in early clinical trials with limited success. However, recent trials on acute myeloid leukemia (AML) patients carrying FLT3 mutations have shown promising results. Effects of sunitinib on leukemic clonogenic cells and potential leukemic stem cells have not been examined so far. We analyzed the anti-proliferative and apoptotic properties of sunitinib on AML-derived cell lines. We also tested the effect of sunitinib on AML patient derived clonogenic cells (AML-CFC), as well as flow-sorted potential leukemic progenitors. Peripheral blood or bone marrow samples were obtained from newly diagnosed AML patients and flow sorted for CD34+ CD133+ or ALDH+ cells. Umbilical cord blood derived CD34+ cells were used as normal controls. Sunitinib induced growth arrest and apoptosis in AML derived cell lines. In addition, 7 μM sunitinib induced 75% reduction of AML-CFC as compared to DMSO treated control (±6.79%;n = 4). In contrast, 7 μM sunitinib treatment of umbilical cord blood derived normal CD34+ cells showed 29% reduction in AML-CFC (±6.77%;n = 5). Treatment of ALDH+ cells sorted from 2 AML cases and CD34+ CD133+ cells from one patient showed reduction of AML-CFC on treatment with sunitinib. Our study highlighted a potent anti-proliferative and proapoptotic effect of sunitinib on AML cell lines, AML patient derived clonogenic cells and potential leukemic stem cells.
文摘The Polycomb group protein Bmi1 is a constituent of the Polycomb repressive complex 1, and it is an important molecule for the regulation of the self-renewal of hematopoietic stem cells. In the field of clinical hematology, there are reports that the level of Bmi1 expression in blast cells is related to the prognosis of acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome. We investigated whether the level of Bmi1 expression in leukemic cells is related to the prognosis and the characteristics of childhood acute lymphoblastic leukemia. In all the leukemic blast cells, Bmi1 gene expression was lower value than that in normal B cells. There were no correlations between the level of Bmi1 gene expression in leukemic blast cells and other parameters, including prognosis. Here, we report that the level of Bmi1 expression in blast cells is not related to the prognosis of pediatric acute lymphoblastic leukemia.
文摘Transplantation of human leukemic cells into severe combined immunodeficiency(SCID)mice has been attempted to study leukemogenesis and to develop therapeuticmodalities.Previous models,however,were limited in efficient initiation orlong-term engraftment of leukemic cells following the transplantation of primaryhuman leukemic cells.The insufficient engraftment of primary leukemic cells couldbe caused by the residual innate immunity in CB-17/SCID or NOD/SCID mice.We
文摘In acute myeloid leukemia(AML),a small cell population that contains stem cell features such as lack of differentiation,self-renewal potential,and drug resistance,can be identified.These so-called leukemic stem cells(LSCs)are thought to be responsible for relapse initiation after initial treatment leading to successful eradication of the bulk AML cell population.Since many studies have aimed to characterize and eliminate LSCs to prevent relapse and increase survival rates of patients,LSCs are one of the best characterized cancer stem cells.The specific elimination of LSCs,while sparing the healthy normal hematopoietic stem cells(HSCs),is one of the major challenges in the treatment of leukemia.This review focuses on several surface markers and intracellular transcription factors that can distinguish AML LSCs from HSCs and,therefore,specifically eliminate these stem cell-like leukemic cells.Moreover,previous and ongoing clinical trials of acute leukemia patients treated with therapies targeting these markers are discussed.In contrast to knowledge on LSCs in AML,insight into LSCs in acute lymphoid leukemia(ALL)is limited.This review therefore also addresses the latest insight into LSCs in ALL.