In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal ...In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.展开更多
With the aim to improve the level of monitoring and warning as well as the comprehensive control of rice blast disease, and to feasibly reduce the disease threat in Nanchong City, the methods of GPS and GIS, systemati...With the aim to improve the level of monitoring and warning as well as the comprehensive control of rice blast disease, and to feasibly reduce the disease threat in Nanchong City, the methods of GPS and GIS, systematical monitoring and field survey, rice blast resistance identification, physiologic races of rice blast monitoring, and meteorological data analysis were performed to study the occurrence and epidemic region division, precise demarcation and occurrence and epidemic regularity of rice blast in Nanchong City. This study first completed the epidemic region division and precise demarcation; first clarified the initial affection(beginning period) locations, occurrence characteristics, epidemic trends and characteristics; explicated the existence of four epidemic peak periods of rice blast in the field, where the damage areas of first peak period played a decisive role during the blast epidemic years; in late May, the cumulative occurrence areas and annual occurrence areas presented higher positive correlation with the correlation coefficient of 0.817;and established a prediction model of occurrence areas per year based on the disease field rate at the end of boot stages and the diseased plant rate at dough stages. The results of investigation on the impact factors investigation of blast disease in Nanchong in recent years suggested that the internal causes were the decrease or loss of blast resistance of the rice cultivars, as well as the increase of physiological races with strong resistance to rice blast and the emergence of new virulent physiologic varieties; the external causes were suitable temperature, too much rainy, and sunlight shortage. Between 2010 and 2015, the short-term forecast accuracy for rice blast in Nanchong was up to 100%, and medium-and long-term forecast accuracy was also up to 98% and 95%, respectively, which increased by 5-15% than that before 1997, thereby making the control effect of rice blast in Nanchong increased by 15-30%.展开更多
Blasting used for rock excavation is associated with ground vibrations having potential damage to surrounding structures.The extent of damage produced in a structure depends largely on ground motion characteristics,dy...Blasting used for rock excavation is associated with ground vibrations having potential damage to surrounding structures.The extent of damage produced in a structure depends largely on ground motion characteristics,dynamic characteristics of structure and the type of geological strata on which it is founded.The safety of surrounding structures against blast vibrations is a cause of concern.However,use of a systematic approach to rock blasting helps to complete the excavation safely in time without endangering the safety of surrounding structures.Various steps are commonly adopted at construction sites to ensure safety of engineered structures against blast vibrations,e.g.adopting a suitable safe vibration level,developing site-specific attenuation relation,estimating safe charges for different distances,designing blasting pattern,and monitoring vibrations during actual blasting.The paper describes the details of studies conducted for ensuring safety of an 85 years old masonry dam and green concrete of varying ages during excavation of about 30,000 m;of hard rock in Maharashtra,India.The studies helped to complete the rock excavation safely in time and the safety of the dam was ensured by monitoring blast vibrations during actual rock excavation.展开更多
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern...To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.展开更多
A laser technique based scanning system was employed to make a comprehensive scanning through borehole forunmapped cavity under open pit bench,then the three-dimensional data will be obtained,and these data were used ...A laser technique based scanning system was employed to make a comprehensive scanning through borehole forunmapped cavity under open pit bench,then the three-dimensional data will be obtained,and these data were used for theoreticalanalysis and numerical simulation to analyze the stability of cap rock.Acoustic emission techniques were also adopted to carry outlong term real time rupture monitoring in cap rock.Therefore,a complete safety evaluation system for the cap rock was establishedto ensure safe operation of subsequent blasting processes.The ideal way of eliminating collapse hazard of such cavity is cap rockcaving through deep-hole blasting,thus,two deep-hole blasting schemes named as vertical deep-hole blasting scheme and one-timeraise driving integrated with deep-hole bench blasting scheme were proposed.The vertical deep-hole blasting scheme has moreexplosive consumption,but the relatively simple blasting net work structure can greatly reduce workloads.However,the one-timeraise driving integrated with deep-hole bench blasting scheme can obviously reduce explosive consumption,but the higher technicalrequirements on drilling,explosive charging and blasting network will increase workloads.展开更多
The present paper reports the testing of 14 OPC-slag mortars and 2 controls OPC and slag mortars. The main aim is to determine the optimum level of replacement slag for achievement to the highest early strength with r...The present paper reports the testing of 14 OPC-slag mortars and 2 controls OPC and slag mortars. The main aim is to determine the optimum level of replacement slag for achievement to the highest early strength with reasonable flow. Variable was the level of GGBFS in the binder. In this experimental work, two types of sands were used that are: silica and mining sands. It is determined that the optimum level of replacement slag is 40% and use of silica sand in OPC is preferable to mining sand and reversely, use of mining sand is preferred in GG100 to silica sand. All mortars had W/B and S/B 0.33 and 2.25, respectively.展开更多
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid...Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.展开更多
油气爆炸是海洋平台主要风险之一,基于爆炸风险的结构设计是设计技术发展趋势。该文梳理风险分析相关的技术法规、规范,总结了爆炸风险评估流程、结构抗爆性能评估方法及流程;以某浮式生产储卸油装置(floating production storage and o...油气爆炸是海洋平台主要风险之一,基于爆炸风险的结构设计是设计技术发展趋势。该文梳理风险分析相关的技术法规、规范,总结了爆炸风险评估流程、结构抗爆性能评估方法及流程;以某浮式生产储卸油装置(floating production storage and offloading unit,FPSO)海洋平台生活楼为依托对象,利用结构有限元分析软件,分别开展了筛选分析、强度水平分析和塑性水平分析,完成基于爆炸风险的生活楼结构性能评估;基于功能性、作业、生命安全这3个性能水平,开展不同爆炸风险水平的结构设计,得到满足各性能水平衡准的设计方案。展开更多
基金Supported by Project from National Natural Science Foundation of China(50674111)the National key Technology R&D Program in 10th Five Years Plan of China
文摘In the study of the application effectiveness of deep-hole controlled pre-splittingblasting technology,it was found through laboratory micro test and field study on a mine insouth China that under the technology,coal masses produce many irreversible cracks.Afterblasting,the nearer the distance from blasting hole,the larger the BET surface areaand volume ratio of the infiltration pore are;they increased by 11.47%and 5.73%,respectively.The coefficient of air permeability is increased 4 times.After 3 months,the gasdrainage rate was increased by 66%.In the first 15 days,the cumulative pumped gas was1.93 times of blasting before.The average absolute gas emission decreased by 63.46%.Experimental results show that deep-hole controlled pre-splitting blasting not only preventscoal and gas outburst,but also gives good economic results.
基金Supported by Notice on the First Batch of National Modern Agricultural Demonstration Zone by the Ministry of Agriculture([2010]22)the Research and Application Project for the Early Warning and Comprehensive Control of the Major Pests and Diseases for Main Grain and Oil Crops(N1997-ZC002)the Fundamental Research Funds for the Central Universities(XDJK2015C060,SWU114046,2362015xk04)~~
文摘With the aim to improve the level of monitoring and warning as well as the comprehensive control of rice blast disease, and to feasibly reduce the disease threat in Nanchong City, the methods of GPS and GIS, systematical monitoring and field survey, rice blast resistance identification, physiologic races of rice blast monitoring, and meteorological data analysis were performed to study the occurrence and epidemic region division, precise demarcation and occurrence and epidemic regularity of rice blast in Nanchong City. This study first completed the epidemic region division and precise demarcation; first clarified the initial affection(beginning period) locations, occurrence characteristics, epidemic trends and characteristics; explicated the existence of four epidemic peak periods of rice blast in the field, where the damage areas of first peak period played a decisive role during the blast epidemic years; in late May, the cumulative occurrence areas and annual occurrence areas presented higher positive correlation with the correlation coefficient of 0.817;and established a prediction model of occurrence areas per year based on the disease field rate at the end of boot stages and the diseased plant rate at dough stages. The results of investigation on the impact factors investigation of blast disease in Nanchong in recent years suggested that the internal causes were the decrease or loss of blast resistance of the rice cultivars, as well as the increase of physiological races with strong resistance to rice blast and the emergence of new virulent physiologic varieties; the external causes were suitable temperature, too much rainy, and sunlight shortage. Between 2010 and 2015, the short-term forecast accuracy for rice blast in Nanchong was up to 100%, and medium-and long-term forecast accuracy was also up to 98% and 95%, respectively, which increased by 5-15% than that before 1997, thereby making the control effect of rice blast in Nanchong increased by 15-30%.
文摘Blasting used for rock excavation is associated with ground vibrations having potential damage to surrounding structures.The extent of damage produced in a structure depends largely on ground motion characteristics,dynamic characteristics of structure and the type of geological strata on which it is founded.The safety of surrounding structures against blast vibrations is a cause of concern.However,use of a systematic approach to rock blasting helps to complete the excavation safely in time without endangering the safety of surrounding structures.Various steps are commonly adopted at construction sites to ensure safety of engineered structures against blast vibrations,e.g.adopting a suitable safe vibration level,developing site-specific attenuation relation,estimating safe charges for different distances,designing blasting pattern,and monitoring vibrations during actual blasting.The paper describes the details of studies conducted for ensuring safety of an 85 years old masonry dam and green concrete of varying ages during excavation of about 30,000 m;of hard rock in Maharashtra,India.The studies helped to complete the rock excavation safely in time and the safety of the dam was ensured by monitoring blast vibrations during actual rock excavation.
文摘To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.
基金Projects(51204206,41272304,41372278) supported by the National Natural Science Foundation of China
文摘A laser technique based scanning system was employed to make a comprehensive scanning through borehole forunmapped cavity under open pit bench,then the three-dimensional data will be obtained,and these data were used for theoreticalanalysis and numerical simulation to analyze the stability of cap rock.Acoustic emission techniques were also adopted to carry outlong term real time rupture monitoring in cap rock.Therefore,a complete safety evaluation system for the cap rock was establishedto ensure safe operation of subsequent blasting processes.The ideal way of eliminating collapse hazard of such cavity is cap rockcaving through deep-hole blasting,thus,two deep-hole blasting schemes named as vertical deep-hole blasting scheme and one-timeraise driving integrated with deep-hole bench blasting scheme were proposed.The vertical deep-hole blasting scheme has moreexplosive consumption,but the relatively simple blasting net work structure can greatly reduce workloads.However,the one-timeraise driving integrated with deep-hole bench blasting scheme can obviously reduce explosive consumption,but the higher technicalrequirements on drilling,explosive charging and blasting network will increase workloads.
文摘The present paper reports the testing of 14 OPC-slag mortars and 2 controls OPC and slag mortars. The main aim is to determine the optimum level of replacement slag for achievement to the highest early strength with reasonable flow. Variable was the level of GGBFS in the binder. In this experimental work, two types of sands were used that are: silica and mining sands. It is determined that the optimum level of replacement slag is 40% and use of silica sand in OPC is preferable to mining sand and reversely, use of mining sand is preferred in GG100 to silica sand. All mortars had W/B and S/B 0.33 and 2.25, respectively.
基金supports from and Na-tional key research and development program of China(project No.2018YFC0705703)the National Natural Science Foundation of China(project No.51708521,51778183).
文摘Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.
文摘油气爆炸是海洋平台主要风险之一,基于爆炸风险的结构设计是设计技术发展趋势。该文梳理风险分析相关的技术法规、规范,总结了爆炸风险评估流程、结构抗爆性能评估方法及流程;以某浮式生产储卸油装置(floating production storage and offloading unit,FPSO)海洋平台生活楼为依托对象,利用结构有限元分析软件,分别开展了筛选分析、强度水平分析和塑性水平分析,完成基于爆炸风险的生活楼结构性能评估;基于功能性、作业、生命安全这3个性能水平,开展不同爆炸风险水平的结构设计,得到满足各性能水平衡准的设计方案。