Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the g...Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the global SLV and its steric and mass components were estimated by satellite altimetry,Argo float data and the Gravity Recovery and Climate Experiment(GRACE) data over 2005-2014.Space gravimetry observations from GRACE suggested that two-thirds of the global mean sea level rise rate observed by altimetry(i.e.,3.1 ± 0.3 mm/a from 2005 to 2014) could be explained by an increase in ocean mass.Furthermore,the global mean sea level was observed to drop significantly during the2010/2011 La Nina event,which may be attributed to the decline of ocean mass and steric SLV.Since early 2011,the global mean sea level began to rise rapidly,which was attributed to an increase in ocean mass.The findings in this study suggested that the global mean sea-level budget was closed from 2005 to 2014 based on altimetry,GRACE,and Argo data.展开更多
Regional sea level variability is linked to regional terrestrial water and the El Ni?o-Southern Oscillation(ENSO).This study assessed the relationships between the sea level variations in the South China Sea(SCS)and E...Regional sea level variability is linked to regional terrestrial water and the El Ni?o-Southern Oscillation(ENSO).This study assessed the relationships between the sea level variations in the South China Sea(SCS)and ENSO,the impact of terrestrial water storage(TWS)on non-steric sea level(NSSL),and the contributions of steric sea level(SSL)and NSSL to sea level anomaly(SLA),respectively.From 2003 to 2015,the SLAs exhibited a long-term trend of 6.65±0.78 mm/yr,which was primarily attributed to the SSLs.Additionally,during 2003-2015,ENSO events alternating with varying intensities might also be responsible for the unusually high SLA trend.Compared to the SSLs,the NSSLs contributed the seasonal signals to the SLAs,while the NSSLs changes were largely explained by the TWS in the Mekong River Basin at the seasonal scale and in the Pearl River Basin and Red River Basin at other time scales.In contrast to the TWS,the contributions of precipitation and evapotranspiration were relatively minor.A negative correlation between the sea level variations and ENSO was also found,with cross-correlation coefficients between the oceanic Ni?o index and SLAs/SSLs/NSSLs of -0.36/-0.37/-0.62 with lags of 2/3/2 months,respectively.These findings systematically reassessed the contributions of different components to the sea level variations.This study provided a benchmark for in-depth analysis of the impacts of terrestrial water and other potential causes on sea level rise in the SCS.展开更多
Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravit...Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravity Recovery and Climate Experiment) satellite gravity,and oceanographic data on annual and inter-annual timescales.On the annual timescale,the geographic distribution of mass-induced SLV's amplitude jointly estimated from altimetry and the ECCO(Estimation of the Circulation and Climate of the Ocean) model agrees very well with that from GRACE.GRACE observes obvious seasonal mass-induced SLV in the SCS with annual amplitude of 2.7±0.4 cm,which is consistent with the annual amplitude of 2.7±0.3 cm estimated from the steric-corrected altimetry.On the inter-annual timescales,the mean SLV in the SCS shows a large oscillation,which is mainly caused by the steric effect.The trend of mean SLV inferred from altimetry in the SCS is 5.5±0.7 mm/yr for the period of 1993-2009,which is significantly higher than the global sea level rise rate of 3.3±0.4 mm/yr in the same period.There is no obvious trend signal in the mass-induced SLV detected from GRACE that indicates the water exchange between the SCS and its adjacent seas and land is in balance within the study period.展开更多
Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) ...Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m2. This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.展开更多
The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to ac...The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to accretion or erosion processes, then the effect of water level variations must be evaluated. In this study, two Landsat TM images overpassing the central Jiangsu coastal waters on 2 January and 7 March 2002, respectively, were treated by the changing detection analysis using Image Differencing and Post-classification Comparison. The simultaneous tide level data from four tide gauge stations along the coast were used for displaying the spatial variations of water levels and determining the elevations of waterlines. The results show that the spatial variations of water levels are highly significant in the central Jiangsu coastal waters. The huge differences of tidal land exposure patterns between the two imaging times are related mainly to the spatial variations of tidal water levels, which are controlled by the differences in tidal phases for different imaging times and the spatial variations of water level over the study area at each imaging time. Under complex tidal conditions, e.g., those of the central Jiangsu coastal waters, the tide-surge model should be used to eliminate effectively the effects of water level variations on remote sensing interpretation of geomorphological changes in the intertidal zone.展开更多
Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (PO...Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (POM). It is concluded that the inter-annual sea level variation in the ECS is negatively correlated with the ENSO index, and that the impact is more apparent in the southern area than in the northern area. Both data analysis and numerical model results also show that the sea level was lower during the typical E1 Niflo period of 1997 to 1998. E1 Nifio also causes the decrease of the annual sea level variation range in the ECS. This phenomenon is especially evident in the southern ECS. The impacts of wind stress and ocean circulation on the sea level variation in the ECS are also discussed in this paper. It is found that the wind stress most strongly affecting the sea level was in the directions of 70° and 20° south of east,, respectively, over the northern and southern areas of the ECS. The northwest wind is particularly strong when E1 Nifio occurs, and sea water is transported southeastward, which lowers the sea level in the southern ECS. The sea level variation in the southern ECS is also significantly affected by the strengthening of the Kuroshio. During the strengthening period of the Kuroshio, the sea level in the ECS usually drops, while the sea level rises when the Kuroshio weakens.展开更多
To identify the response of groundwater level variation to global climate change in Northwest China’s inland basins,the Golmud River Catchment was chosen as a case in this paper.Approaches of time series analysis and...To identify the response of groundwater level variation to global climate change in Northwest China’s inland basins,the Golmud River Catchment was chosen as a case in this paper.Approaches of time series analysis and correlation analysis were adopted to investigate the variation of groundwater level influenced by global climate change from 1977 to 2017.Results show that the temperature in the Golmud River Catchment rose 0.57℃ every 10 years.It is highly positive correlated with global climate temperature,with a correlation coefficient,0.87.The frequency and intensity of extreme precipitation were both increased.Generally,groundwater levels increased from 1977 to 2017 in all phreatic and confined aquifers and the fluctuation became more violent.Most importantly,extreme precipitation led to the fact that groundwater level rises sharply,which induced city waterlogging.However,no direct evidence shows that normal precipitation triggered groundwater level rise,and the correlation coefficients between precipitation data from Golmud meteorological station located in the Gobi Desert and groundwater level data of five observation wells are 0.13,0.02,−0.11,0.04,and−0.03,respectively.This phenomenon could be explained as that the main recharge source of groundwater is river leakage in the alluvial-pluvial Gobi plain because of the high total head of river water and goodness hydraulic conductivity of the vadose zone.Data analysis shows that glacier melting aggravated because of local temperature increased.As a result,runoff caused groundwater levels to ascend from 1977 to 2017.Correlation coefficients of two groundwater wells observation data and runoff of Golmud River are 0.80 and 0.68.The research results will contribute to handling the negative effects of climate change on groundwater for Northwestern China.展开更多
Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic pa...Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.展开更多
The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84...The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P), Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM) data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM) data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH), and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data) are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD) of the differences between the models is about S cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.展开更多
The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea...The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified.展开更多
Storm surges are cataclysmic natural disasters that occur along the coasts and are usually accompanied by large waves.The effects of coupled storm surges and waves can pose a significant threat to coastal security.Pre...Storm surges are cataclysmic natural disasters that occur along the coasts and are usually accompanied by large waves.The effects of coupled storm surges and waves can pose a significant threat to coastal security.Previous labo-ratory studies on the effects of storm surges and waves on coastal structures have typically utilized steady water levels and constant wave elements.An indoor simulation of the coupled processes of tides and waves is developed by adding a tide generation system to an existing laboratory wave basin to model continuous dynamic tide levels so that tide generation and wave-making occur synchronously in the pool.Specific experimental methods are given,which are applied to further study waves overtopping on artificial sea dikes and coastal flooding evolution under the coupled actions of tides and waves.The results of the overtopping discharge obtained by the test with a dynamic water level are compared with those obtained from steady water level tests and the existing empirical formula.In addition,the impacts of ecological coastal shelterbelts and structures on coastal flood processes and distributions are also investi-gated.The proposed simulation methods provide a new approach for studying the effects of storm surges and waves on coastal areas.The study also aims to provide a reference for coastal protective engineering.展开更多
The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and abso...The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and absolute gravity observations in 2001 and 2003 are used to determine the horizontal and vertical motion of China coast in ITRF2000 and Eurasia frame. The difference between results of continuous observation and periodic observation is discussed.展开更多
The consideration of unsaturated conditions is infrequently addressed in current Terzaghi’s soil arching research.A modified analytical method for calculation of unsaturated loosening earth pressure above shallow tra...The consideration of unsaturated conditions is infrequently addressed in current Terzaghi’s soil arching research.A modified analytical method for calculation of unsaturated loosening earth pressure above shallow trapdoor is proposed in this paper.By assuming the existence of a vertical slip surface above the trapdoor,the stress state of the soil in the loosening area are delineated in the extended Mohr–Coulomb circle.To account for the non-uniform distribution of vertical stress at arbitrary points along the horizontal differential soil trip,a virtual rotation circle trajectory of major principal stress is employed.Subsequently,the average vertical stress acting on the soil trip is determined through integral approach.Taking into account the influence of matric suction on soil weight and apparent cohesion,the differential equation governing the soil trip is solved analytically for cases of uniform matric suction distribution and alternatively using the finite difference method for scenarios involving non-uniform matric suction distribution.The proposed method’s validity is confirmed through comparison with published results.The parameter analysis indicates that the loosening earth pressure initially decreases and subsequently increases with the increase of the soil saturation.With the rise of groundwater level,the normalized effective loosening earth pressure shows a decreasing trend.展开更多
Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardl...Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of thirteen Arabidopsis thaliana accessions using a ultra performance liquid chromatography triple quadrupole mass spectrometer. Root system architecture of the set of accessions was quantified, using a new parameter (mature root unit) for complex root systems, and correlated with the phytohormone data. Significant variations in phytohormone levels among the accessions were detected, but were remarkably small, namely less than three-fold difference between extremes. For cytokinins, relatively larger variations were found for ribosides and glucosides, as compared to the free bases. For root phenotyping, length-related traits--lateral root length and total root length--showed larger variations than lateral root number-related ones. For root architecture, antagonistic interactions between hormones, for example, indole-3-acetic acid to trans-zeatin were detected in correlation analysis. These findings provide conclusive evidence for the presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative genetic analyses are feasible.展开更多
The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS result...The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS results show that the relative vertical offsets for the pairs of GPS receiver antenna phase centers still exist, although absolute calibration of the antenna phase center variations (PCVs) has been considered. With respect to the TPS CR.G3 antenna, the relative vertical offset for the LEI AT504 antenna is 8.4 mm, the offset for the ASH701945C_M antenna is 5.5 mm, and those for the ASHY00936E_C and ASH701945B_M antennas are approximately between 2 mm and -3 mm. The relative offsets for the same type of antennas are approximately 1 mm. By correcting the absolute PCVs, the existing relative offset becomes negligible for horizontal positioning.展开更多
No-tillage seeding has become an important approach to improve crop productivity,which needs colters of high performance to cut the root-stubble-soil composite.However,the difficulty of maize root-stubbles three-dimen...No-tillage seeding has become an important approach to improve crop productivity,which needs colters of high performance to cut the root-stubble-soil composite.However,the difficulty of maize root-stubbles three-dimensional(3D)modeling hinders finite element(FE)simulation to improve development efficiency of such colters because of maize root system complexity and opaque nature of the soil.Fortunately,the non-destructive 3D geometric model of the maize root-stubble in-situ can be established via X-ray computed tomography(CT)following by a systematic procedure.The whole procedure includes CT scanning of the maize root-stubble-soil composite sample,image reconstruction via filtered back-projection(FBP)with the Hanning filter,segmentation of root-stubble via a variational level set method,and post-processing via morphological operations.The 3D reconstruction model of the maize root-stubble in-situ presents a complete,complex and in-situ geometrical morphology,which cannot be realized via other methods,including the destructive modelling after washing via CT.This study is the first to build a 3D geometric model of a maize root-stubble in-situ via CT,which opens up new possibilities for simulation of root-stubble-soil cutting using FEM,and much other research related to plant root-stubbles.展开更多
Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the nor...Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon(T1/T2) and Quartz(Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing,with an annual mean PM_(2.5)mass concentration of 102 μg/m^3. According to the calculated PM_(2.5)mass concentration, 50% of our sampling days were acceptable(PM_(2.5)〈 75 μg/m^3), 30% had slight/medium pollution(75–150 μg/m^3), and 7% had severe pollution(〉 250 μg/m^3). Sampling interruption occurred frequently for the Teflon filter group(75%) in severe pollution periods,resulting in important data being missing. Further analysis showed that high PM_(2.5)combined with high relative humidity(RH) gave rise to the interruptions. The seasonal variation of PM_(2.5)was presented, with higher monthly average mass concentrations in winter(peak value in February, 422 μg/m^3), and lower in summer(7 μg/m^3 in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM_(2.5). The case of February presented the most serious pollution, with monthly averaged PM_(2.5)of 181 μg/m^3 and 32% of days with severe pollution. The abundance of PM_(2.5)in winter could be related to increased coal consumption for heating needs.展开更多
基金supported by the National Key Basic Research Program of China(973 program,2012CB957703 and2013CB733305)the National Natural Science Foundation of China(41431070,41174066 and 41321063)
文摘Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the global SLV and its steric and mass components were estimated by satellite altimetry,Argo float data and the Gravity Recovery and Climate Experiment(GRACE) data over 2005-2014.Space gravimetry observations from GRACE suggested that two-thirds of the global mean sea level rise rate observed by altimetry(i.e.,3.1 ± 0.3 mm/a from 2005 to 2014) could be explained by an increase in ocean mass.Furthermore,the global mean sea level was observed to drop significantly during the2010/2011 La Nina event,which may be attributed to the decline of ocean mass and steric SLV.Since early 2011,the global mean sea level began to rise rapidly,which was attributed to an increase in ocean mass.The findings in this study suggested that the global mean sea-level budget was closed from 2005 to 2014 based on altimetry,GRACE,and Argo data.
基金supported by the Natural Science Foundation of Hubei Province,China(Grant No.2022CFB064)the National Natural Science Foundation of China(Grant Nos.41974003&41674007)。
文摘Regional sea level variability is linked to regional terrestrial water and the El Ni?o-Southern Oscillation(ENSO).This study assessed the relationships between the sea level variations in the South China Sea(SCS)and ENSO,the impact of terrestrial water storage(TWS)on non-steric sea level(NSSL),and the contributions of steric sea level(SSL)and NSSL to sea level anomaly(SLA),respectively.From 2003 to 2015,the SLAs exhibited a long-term trend of 6.65±0.78 mm/yr,which was primarily attributed to the SSLs.Additionally,during 2003-2015,ENSO events alternating with varying intensities might also be responsible for the unusually high SLA trend.Compared to the SSLs,the NSSLs contributed the seasonal signals to the SLAs,while the NSSLs changes were largely explained by the TWS in the Mekong River Basin at the seasonal scale and in the Pearl River Basin and Red River Basin at other time scales.In contrast to the TWS,the contributions of precipitation and evapotranspiration were relatively minor.A negative correlation between the sea level variations and ENSO was also found,with cross-correlation coefficients between the oceanic Ni?o index and SLAs/SSLs/NSSLs of -0.36/-0.37/-0.62 with lags of 2/3/2 months,respectively.These findings systematically reassessed the contributions of different components to the sea level variations.This study provided a benchmark for in-depth analysis of the impacts of terrestrial water and other potential causes on sea level rise in the SCS.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-143)National Natural Science Foundation of China (Grant Nos. 40974045,41021003)Open Fund in KLDG/IGG (Grant No. L09-18)
文摘Sea level variations(SLVs) can be divided into two major components:the steric SLV and the mass-induced SLV.These two components of SLV in the South China Sea(SCS) are studied by using satellite altimetry,GRACE(Gravity Recovery and Climate Experiment) satellite gravity,and oceanographic data on annual and inter-annual timescales.On the annual timescale,the geographic distribution of mass-induced SLV's amplitude jointly estimated from altimetry and the ECCO(Estimation of the Circulation and Climate of the Ocean) model agrees very well with that from GRACE.GRACE observes obvious seasonal mass-induced SLV in the SCS with annual amplitude of 2.7±0.4 cm,which is consistent with the annual amplitude of 2.7±0.3 cm estimated from the steric-corrected altimetry.On the inter-annual timescales,the mean SLV in the SCS shows a large oscillation,which is mainly caused by the steric effect.The trend of mean SLV inferred from altimetry in the SCS is 5.5±0.7 mm/yr for the period of 1993-2009,which is significantly higher than the global sea level rise rate of 3.3±0.4 mm/yr in the same period.There is no obvious trend signal in the mass-induced SLV detected from GRACE that indicates the water exchange between the SCS and its adjacent seas and land is in balance within the study period.
基金supported by the Major State Basic Research Development Program (No.2010CB951104)the Program for New Century Excellent Talents in University (No. NCET-09-0233)the National Water Pollution Control and Treatment Project in China (No.2008ZX07209-009)
文摘Shallow lake eutrophication is a global environmental issue. This study investigated the effects of water level variation and nutrient loadings on the growth and nutrient accumulation of Phragmites australis (reed) by field samplings in Baiyangdian Lake, the largest shallow lake of northern China. The field samplings were conducted in two sites of different nutrient loadings during the whole growth period of reeds, and three types of zones with different water depths were chosen for each site, including the terrestrial zone with water level below the ground, the ecotone zone with the water level varying from belowground to aboveground, and the submerged zone with water level above the ground. The result showed that reed growth was more limited by water level variation than nutrient loadings. The average stem lengths and diameters in terrestrial zones were about 26.3%-27.5% and 7.2%-12.0% higher than those in submerged zones, respectively. Similarly, the terrestrial status increased the aboveground biomass of reeds by 36.6%-51.8% compared with the submerged status. Both the nutrient concentrations and storages in the aboveground reeds were mainly influenced by the nutrient loadings in surface water and sediment rather than the water level variation of the reed growth environment, and the nutrient storages reached their maxima in late August or early September. It was observed that the maximum nitrogen storage occurred in the terrestrial zone with higher nutrient loadings, with the value of 74.5 g/m2. This study suggested that water level variation and nutrient loadings should be considered when using reeds to control and remediate eutrophication of shallow lakes.
基金The Ministry of Science and Technology of China under contract No. 2006CB708410the National Natural Science Foundation of China (NSFC) under contract No. 40706027
文摘The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to accretion or erosion processes, then the effect of water level variations must be evaluated. In this study, two Landsat TM images overpassing the central Jiangsu coastal waters on 2 January and 7 March 2002, respectively, were treated by the changing detection analysis using Image Differencing and Post-classification Comparison. The simultaneous tide level data from four tide gauge stations along the coast were used for displaying the spatial variations of water levels and determining the elevations of waterlines. The results show that the spatial variations of water levels are highly significant in the central Jiangsu coastal waters. The huge differences of tidal land exposure patterns between the two imaging times are related mainly to the spatial variations of tidal water levels, which are controlled by the differences in tidal phases for different imaging times and the spatial variations of water level over the study area at each imaging time. Under complex tidal conditions, e.g., those of the central Jiangsu coastal waters, the tide-surge model should be used to eliminate effectively the effects of water level variations on remote sensing interpretation of geomorphological changes in the intertidal zone.
基金supported by the National Basic Research Program of China(973 program,Grant No 2007CB411807)the National Natural Science Foundation of China(Grants No40976006 and 40906002)+1 种基金the National Marine Public Welfare Research Project of China(Grant No201005019)the Project of Key Laboratory of Coastal Disasters and Defense of Ministry of Education of China(Grant No200802)
文摘Sea level variability in the East China Sea (ECS) was examined based primarily on the analysis of TOPEX/Poseidon altimetry data and tide gauge data as well as numerical simulation with the Princeton ocean model (POM). It is concluded that the inter-annual sea level variation in the ECS is negatively correlated with the ENSO index, and that the impact is more apparent in the southern area than in the northern area. Both data analysis and numerical model results also show that the sea level was lower during the typical E1 Niflo period of 1997 to 1998. E1 Nifio also causes the decrease of the annual sea level variation range in the ECS. This phenomenon is especially evident in the southern ECS. The impacts of wind stress and ocean circulation on the sea level variation in the ECS are also discussed in this paper. It is found that the wind stress most strongly affecting the sea level was in the directions of 70° and 20° south of east,, respectively, over the northern and southern areas of the ECS. The northwest wind is particularly strong when E1 Nifio occurs, and sea water is transported southeastward, which lowers the sea level in the southern ECS. The sea level variation in the southern ECS is also significantly affected by the strengthening of the Kuroshio. During the strengthening period of the Kuroshio, the sea level in the ECS usually drops, while the sea level rises when the Kuroshio weakens.
基金This research was supported by the National Natural Science Foundation of China(41672250,42177076)the Key R&D Projects of Shaanxi Province(2021ZDLSF05-09)the Natural Science Foundation of Shaanxi Province(2019JLZ-03).
文摘To identify the response of groundwater level variation to global climate change in Northwest China’s inland basins,the Golmud River Catchment was chosen as a case in this paper.Approaches of time series analysis and correlation analysis were adopted to investigate the variation of groundwater level influenced by global climate change from 1977 to 2017.Results show that the temperature in the Golmud River Catchment rose 0.57℃ every 10 years.It is highly positive correlated with global climate temperature,with a correlation coefficient,0.87.The frequency and intensity of extreme precipitation were both increased.Generally,groundwater levels increased from 1977 to 2017 in all phreatic and confined aquifers and the fluctuation became more violent.Most importantly,extreme precipitation led to the fact that groundwater level rises sharply,which induced city waterlogging.However,no direct evidence shows that normal precipitation triggered groundwater level rise,and the correlation coefficients between precipitation data from Golmud meteorological station located in the Gobi Desert and groundwater level data of five observation wells are 0.13,0.02,−0.11,0.04,and−0.03,respectively.This phenomenon could be explained as that the main recharge source of groundwater is river leakage in the alluvial-pluvial Gobi plain because of the high total head of river water and goodness hydraulic conductivity of the vadose zone.Data analysis shows that glacier melting aggravated because of local temperature increased.As a result,runoff caused groundwater levels to ascend from 1977 to 2017.Correlation coefficients of two groundwater wells observation data and runoff of Golmud River are 0.80 and 0.68.The research results will contribute to handling the negative effects of climate change on groundwater for Northwestern China.
基金supported by National Natural Science Foundation of China (No. 40574020)Basic Research item of Institute of Earthquake Science, China Earthquake Administration (No. 0207690236).
文摘Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.
基金supported by National 973 Project China (2012CB957703, 2013CB733302)National 863 Project China (2013AA122502)+1 种基金Public Science and Technology Research Funds projects of Surveying, Mapping and Geo-information (201512001)National Natural Science Foundation of China (41210006, 41304003)
文摘The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P), Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM) data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM) data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH), and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data) are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD) of the differences between the models is about S cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.
基金The"Twelfth Five-Year Plan"of the National Science and Technology Support Project(Grant No.2012BAK10B01)the National Natural Science Foundation of China(Grant Nos.41372321 and 41502305)China Geological Survey Projects(Grant No.121201009000150018)
文摘The Three Gorges region in China was basically a geohazard-prone area prior to construction of the Three Gorges Reservoir (TGR). After construction of the TGR, the water level was raised from 70 m to 175 m above sea level (ASL), and annual reservoir regulation has caused a 30-m water level difference after impoundment of the TGR since September 2008. This paper first presents the spatiotemporal distribution of landslides in six periods of 175 m ASL trial impoundments from 2008 to 2014. The results show that the number of landslides sharply decreased from 273 at the initial stage to less than ten at the second stage of impoundment. Based on this, the reservoir-induced landslides in the TGR region can be roughly classified into five failure patterns, i.e. accumulation landslide, dip-slope landslide, reversed bedding landslide, rockfall, and karst breccia landslide. The accumulation landslides and dip-slope landslides account for more than 90%. Taking the Shuping accumulation landslide (a sliding mass volume of 20.7 × 106 m^3) in Zigui County and the Outang dip-slope landslide (a sliding mass volume of about 90 × 106 m^3) in Fengjie County as two typical cases, the mechanisms of reactivation of the two landslides are analyzed. The monitoring data and factor of safety (FOS) calculation show that the accumulation landslide is dominated by water level variation in the reservoir as most part of the mass body is under 175 m ASL, and the dip-slope landslide is controlled by the coupling effect of reservoir water level variation and precipitation as an extensive recharge area of rainfall from the rear and the front mass is below 175 m ASL. The characteristics of landslide-induced impulsive wave hazards after and before reservoir impoundment are studied, and the probability of occurrence of a landslide-induced impulsive wave hazard has increased in the reservoir region. Simulation results of the Ganjingzi landslide in Wushan County indicate the strong relationship between landslide-induced surge and water variation with high potential risk to shipping and residential areas. Regarding reservoir regulation in TGR when using a single index, i.e. 1-d water level variation, water resources are not well utilized, and there is also potential risk of disasters since 2008. In addition, various indices such as 1-d, 5-d, and 10-d water level variations are proposed for reservoir regulation. Finally, taking reservoir-induced landslides in June 2015 for example, the feasibility of the optimizing indices of water level variations is verified.
基金This study was financially supported by the NSFC-Shandong Joint Fund Key Project(Grant No.U1706216)the Innovative Research Foundation of Ship General Performance(Grant No.31422118)the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Grant Nos.Y220013 and Y222004).
文摘Storm surges are cataclysmic natural disasters that occur along the coasts and are usually accompanied by large waves.The effects of coupled storm surges and waves can pose a significant threat to coastal security.Previous labo-ratory studies on the effects of storm surges and waves on coastal structures have typically utilized steady water levels and constant wave elements.An indoor simulation of the coupled processes of tides and waves is developed by adding a tide generation system to an existing laboratory wave basin to model continuous dynamic tide levels so that tide generation and wave-making occur synchronously in the pool.Specific experimental methods are given,which are applied to further study waves overtopping on artificial sea dikes and coastal flooding evolution under the coupled actions of tides and waves.The results of the overtopping discharge obtained by the test with a dynamic water level are compared with those obtained from steady water level tests and the existing empirical formula.In addition,the impacts of ecological coastal shelterbelts and structures on coastal flood processes and distributions are also investi-gated.The proposed simulation methods provide a new approach for studying the effects of storm surges and waves on coastal areas.The study also aims to provide a reference for coastal protective engineering.
文摘The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and absolute gravity observations in 2001 and 2003 are used to determine the horizontal and vertical motion of China coast in ITRF2000 and Eurasia frame. The difference between results of continuous observation and periodic observation is discussed.
基金supported by the National Natural Science Foundation of China(Grant No.41874067),the Innovative Funds Plan of Henan University of Technology(No.2022ZKCJ07)the Commonweal Technology Project of Jinhua City(No.2023-4-037).
文摘The consideration of unsaturated conditions is infrequently addressed in current Terzaghi’s soil arching research.A modified analytical method for calculation of unsaturated loosening earth pressure above shallow trapdoor is proposed in this paper.By assuming the existence of a vertical slip surface above the trapdoor,the stress state of the soil in the loosening area are delineated in the extended Mohr–Coulomb circle.To account for the non-uniform distribution of vertical stress at arbitrary points along the horizontal differential soil trip,a virtual rotation circle trajectory of major principal stress is employed.Subsequently,the average vertical stress acting on the soil trip is determined through integral approach.Taking into account the influence of matric suction on soil weight and apparent cohesion,the differential equation governing the soil trip is solved analytically for cases of uniform matric suction distribution and alternatively using the finite difference method for scenarios involving non-uniform matric suction distribution.The proposed method’s validity is confirmed through comparison with published results.The parameter analysis indicates that the loosening earth pressure initially decreases and subsequently increases with the increase of the soil saturation.With the rise of groundwater level,the normalized effective loosening earth pressure shows a decreasing trend.
文摘Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in plants. Despite the significant roles of phytohormones in plant development, including root architecture, hardly any studies have been done to investigate natural variation in endogenous hormone levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of thirteen Arabidopsis thaliana accessions using a ultra performance liquid chromatography triple quadrupole mass spectrometer. Root system architecture of the set of accessions was quantified, using a new parameter (mature root unit) for complex root systems, and correlated with the phytohormone data. Significant variations in phytohormone levels among the accessions were detected, but were remarkably small, namely less than three-fold difference between extremes. For cytokinins, relatively larger variations were found for ribosides and glucosides, as compared to the free bases. For root phenotyping, length-related traits--lateral root length and total root length--showed larger variations than lateral root number-related ones. For root architecture, antagonistic interactions between hormones, for example, indole-3-acetic acid to trans-zeatin were detected in correlation analysis. These findings provide conclusive evidence for the presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative genetic analyses are feasible.
基金supported by the Science for Earthquake Resilience(XH14070Y,XH15064Y)the China NationalSpecial Fund for Earthquake Scientific Research in Public Interest(201208009)
文摘The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS results show that the relative vertical offsets for the pairs of GPS receiver antenna phase centers still exist, although absolute calibration of the antenna phase center variations (PCVs) has been considered. With respect to the TPS CR.G3 antenna, the relative vertical offset for the LEI AT504 antenna is 8.4 mm, the offset for the ASH701945C_M antenna is 5.5 mm, and those for the ASHY00936E_C and ASH701945B_M antennas are approximately between 2 mm and -3 mm. The relative offsets for the same type of antennas are approximately 1 mm. By correcting the absolute PCVs, the existing relative offset becomes negligible for horizontal positioning.
基金The work is financially supported by the National Natural Science Foundation of China(Grant No.51705227)University of Science and Technology Liaoning Talent Project Grants(Grant No.601011507-19)+1 种基金and Special Scientific Research Foundation of University of Science and Technology Liaoning(Grant No.2016YY02)We thank Jiuming Su for his lab assistance,and also thank Zong Zhang and Xinrui Xu for their analysis assistance.
文摘No-tillage seeding has become an important approach to improve crop productivity,which needs colters of high performance to cut the root-stubble-soil composite.However,the difficulty of maize root-stubbles three-dimensional(3D)modeling hinders finite element(FE)simulation to improve development efficiency of such colters because of maize root system complexity and opaque nature of the soil.Fortunately,the non-destructive 3D geometric model of the maize root-stubble in-situ can be established via X-ray computed tomography(CT)following by a systematic procedure.The whole procedure includes CT scanning of the maize root-stubble-soil composite sample,image reconstruction via filtered back-projection(FBP)with the Hanning filter,segmentation of root-stubble via a variational level set method,and post-processing via morphological operations.The 3D reconstruction model of the maize root-stubble in-situ presents a complete,complex and in-situ geometrical morphology,which cannot be realized via other methods,including the destructive modelling after washing via CT.This study is the first to build a 3D geometric model of a maize root-stubble in-situ via CT,which opens up new possibilities for simulation of root-stubble-soil cutting using FEM,and much other research related to plant root-stubbles.
基金supported by the State Environmental Protection Commonweal Trade Scientific Research,Ministry of Environmental Protection of China (No.2013467010)The financial support of this special fund for the public service sector and research support from the staff of Chinese Research Academy of Environmental Sciences (CRAES) (Z141100002714002)
文摘Daily PM_(2.5)(particulate matter with an aerodynamic diameter of below 2.5 μm) mass concentrations were measured by gravimetric analysis in Chinese Research Academy of Environmental Sciences(CRAES), in the northern part of the Beijing urban area, from December 2013 to April 2015. Two pairs of Teflon(T1/T2) and Quartz(Q1/Q2) samples were obtained, for a total number of 1352 valid filters. Results showed elevated pollution in Beijing,with an annual mean PM_(2.5)mass concentration of 102 μg/m^3. According to the calculated PM_(2.5)mass concentration, 50% of our sampling days were acceptable(PM_(2.5)〈 75 μg/m^3), 30% had slight/medium pollution(75–150 μg/m^3), and 7% had severe pollution(〉 250 μg/m^3). Sampling interruption occurred frequently for the Teflon filter group(75%) in severe pollution periods,resulting in important data being missing. Further analysis showed that high PM_(2.5)combined with high relative humidity(RH) gave rise to the interruptions. The seasonal variation of PM_(2.5)was presented, with higher monthly average mass concentrations in winter(peak value in February, 422 μg/m^3), and lower in summer(7 μg/m^3 in June). From May to August, the typical summer period, least severe pollution events were observed, with high precipitation levels accelerating the process of wet deposition to remove PM_(2.5). The case of February presented the most serious pollution, with monthly averaged PM_(2.5)of 181 μg/m^3 and 32% of days with severe pollution. The abundance of PM_(2.5)in winter could be related to increased coal consumption for heating needs.