The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness an...The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of the calculations. Its application to ternary AI-Si-Mg system is executed in detail. The calculated phase equilibria agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial values.展开更多
In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary ...In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary condition of original problem. Under the MPEC-LICQ, the proposed method is proved convergent to B-stationary point of MPLCC.展开更多
基金This research is supported by the State Key Fundamental Research Project(G2000067202-1).
文摘The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of nonlinear equations, is applied to calculate the stable phase equilibria. It can get the best combination between robustness and speed of the calculations. Its application to ternary AI-Si-Mg system is executed in detail. The calculated phase equilibria agree well with the experimental results. Furthermore, the Levenberg-Marquardt method is not sensitive to the initial values.
文摘In this paper, a new method for solving a mathematical programming problem with linearly complementarity constraints (MPLCC) is introduced, which applies the Levenberg-Marquardt (L-M) method to solve the B-stationary condition of original problem. Under the MPEC-LICQ, the proposed method is proved convergent to B-stationary point of MPLCC.
基金Supported by National Natural Science Fundation of China(Nos.11101231,10971118)Shandong Province Higher Educational Science and Technology Program(No.J10LA05)International Cooperation Program for Excellent Lecturers of 2011 by Shandong Provincial Education Department