Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural netw...Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural networks for nonlinear systems, and combined with LM algorithm, a multi layer forward networks is adopted to predict the seismic responses of structure. The networks is trained in batch by the shaking table test data of three floor reinforced concrete structure firstly, then the seismic responses of structure are predicted under the unused excitation data, and the predict responses are compared with the experiment responses. The error curves between the prediction and the experimental results show the efficiency of the method. Conclusion LM algorithm has very good convergence rate, and the neural networks can predict the seismic response of the structure well.展开更多
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of...Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.展开更多
本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用...本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用来训练线性参数 .最后以辩识一个混沌系统为例进行了数值仿真 ,并与改进的 BP算法和单纯 L M算法进行了比较 。展开更多
A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Z...A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of thermomechanical treatment processes is established via sufficient data acquisition by the network. The results showed that the ANN system is an effective way and can be successfully used to predict and analyze the properties of Cu-Cr-Zr alloy.展开更多
This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of ...This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a number of examples including a practical case study. The identification results obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error.展开更多
A traditional neural network was improved in two ways. An improved algorithm is associated into the network in order to enhance the optimization rate and predictability of the network. Two different methods were suppl...A traditional neural network was improved in two ways. An improved algorithm is associated into the network in order to enhance the optimization rate and predictability of the network. Two different methods were supplied to improve the generalization of the network. With this improved neural network, the properties of the AB_5-based hydrogen-storage alloys, the initial discharge capacity and capacity retention ratios after charge-discharge cycles, were predicted. A better prediction result was obtained by using the network.展开更多
A new fuzzy optimization neural network model is proposed based on the Levenberg-Marquardt (LM) algorithm on account of the disadvantages of slow convergence of traditional fuzzy optimization neural network model. In ...A new fuzzy optimization neural network model is proposed based on the Levenberg-Marquardt (LM) algorithm on account of the disadvantages of slow convergence of traditional fuzzy optimization neural network model. In this new model,the gradient descent algorithm is replaced by the LM algorithm to obtain the minimum of output errors during network training,which changes the weights adjusting equations of the network and increases the training speed. Moreover,to avoid the results yielding to local minimum,the transfer function is also revised to sigmoid function. A case study is utilized to validate this new model,and the results reveal that the new model fast training speed and better forecasting capability.展开更多
<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of p...<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>展开更多
An image consists of large data and requires more space in the memory. The large data results in more transmission time from transmitter to receiver. The time consumption can be reduced by using data compression techn...An image consists of large data and requires more space in the memory. The large data results in more transmission time from transmitter to receiver. The time consumption can be reduced by using data compression techniques. In this technique, it is possible to eliminate the redundant data contained in an image. The compressed image requires less memory space and less time to transmit in the form of information from transmitter to receiver. Artificial neural net- work with feed forward back propagation technique can be used for image compression. In this paper, the Bipolar Coding Technique is proposed and implemented for image compression and obtained the better results as compared to Principal Component Analysis (PCA) technique. However, the LM algorithm is also proposed and implemented which can acts as a powerful technique for image compression. It is observed that the Bipolar Coding and LM algorithm suits the best for image compression and processing applications.展开更多
This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal mod...This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal model control are the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algorithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these limitations, we chose the architectures of neural networks deduced from the conventional models and the Levenberg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of this latest control showed compensation for disturbance, good trajectory tracking performance and system stability.展开更多
为了对大坝进行切实有效的监控,需要建立一个良好的大坝预测模型。针对传统BP(Back-Propagation)神经网络存在的收敛速度慢和泛化能力弱等缺陷,利用LM-BP(Levenberg Marquardt Back Propagation)算法对大坝变形进行预测,并根据丹江口大...为了对大坝进行切实有效的监控,需要建立一个良好的大坝预测模型。针对传统BP(Back-Propagation)神经网络存在的收敛速度慢和泛化能力弱等缺陷,利用LM-BP(Levenberg Marquardt Back Propagation)算法对大坝变形进行预测,并根据丹江口大坝1996和1997两年的变形观测数据,对大坝挠度预测结果进行分析。结果表明,所建立的LM-BP神经网络的预测精度和收敛速度明显提高。展开更多
文摘Objective To investigate the prediction effect of neural networks for seismic response of structure under the Levenberg Marquardt(LM) algorithm. Results Based on identification and prediction ability of neural networks for nonlinear systems, and combined with LM algorithm, a multi layer forward networks is adopted to predict the seismic responses of structure. The networks is trained in batch by the shaking table test data of three floor reinforced concrete structure firstly, then the seismic responses of structure are predicted under the unused excitation data, and the predict responses are compared with the experiment responses. The error curves between the prediction and the experimental results show the efficiency of the method. Conclusion LM algorithm has very good convergence rate, and the neural networks can predict the seismic response of the structure well.
基金National Natural Science Foundation of China(No.61371024)Aviation Science Fund of China(No.2013ZD53051)+2 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC,China(No.cxy2013XGD14)the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications,China
文摘Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
文摘本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用来训练线性参数 .最后以辩识一个混沌系统为例进行了数值仿真 ,并与改进的 BP算法和单纯 L M算法进行了比较 。
基金This work was supported by the stae“863 plan”,under Grant No.2002AA331112by the Major Science and Technology Project of Henan Province,China,under Grant No.0122021300.
文摘A supervised artificial neural network (ANN) to model the nonlinear relationship between parameters of thermomechanical treatment processes with respect to hardness and conductivity properties was proposed for Cu-Cr-Zr alloy. The improved model was developed by the Levenberg-Marquardt training algorithm. A basic repository on the domain knowledge of thermomechanical treatment processes is established via sufficient data acquisition by the network. The results showed that the ANN system is an effective way and can be successfully used to predict and analyze the properties of Cu-Cr-Zr alloy.
文摘This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a number of examples including a practical case study. The identification results obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error.
文摘A traditional neural network was improved in two ways. An improved algorithm is associated into the network in order to enhance the optimization rate and predictability of the network. Two different methods were supplied to improve the generalization of the network. With this improved neural network, the properties of the AB_5-based hydrogen-storage alloys, the initial discharge capacity and capacity retention ratios after charge-discharge cycles, were predicted. A better prediction result was obtained by using the network.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50579095)Ertan Hydropower Development Company, LTD.
文摘A new fuzzy optimization neural network model is proposed based on the Levenberg-Marquardt (LM) algorithm on account of the disadvantages of slow convergence of traditional fuzzy optimization neural network model. In this new model,the gradient descent algorithm is replaced by the LM algorithm to obtain the minimum of output errors during network training,which changes the weights adjusting equations of the network and increases the training speed. Moreover,to avoid the results yielding to local minimum,the transfer function is also revised to sigmoid function. A case study is utilized to validate this new model,and the results reveal that the new model fast training speed and better forecasting capability.
文摘<div style="text-align:justify;"> Due to the influence of processing technology and environmental factors, there are errors in attitude measurement with the three-axis magnetometer, and the change of parameters during the operation of the magnetometer in orbit will have a great impact on the measurement accuracy. This paper studies the calibration method of magnetometer based on BP neural network, which reduces the influence of model error on calibration accuracy. Firstly, the error model of the magnetometer and the structural characteristics of the BP neural network are analyzed. Secondly, the number of hidden layers and hidden nodes is optimized. To avoid the problem of slow convergence and low accuracy of basic BP algorithm, this paper uses the Levenberg Marquardt backpropagation training method to improve the training speed and prediction accuracy and realizes the on-orbit calibration of magnetometer through online training of the neural network. Finally, the effectiveness of the method is verified by numerical simulation. The results show that the neural network designed in this paper can effectively reduce the measurement error of magnetometer, while the online training can effectively reduce the error caused by the change of magnetometer parameters, and reduce the measurement error of magnetometer to less than 10 nT. </div>
文摘An image consists of large data and requires more space in the memory. The large data results in more transmission time from transmitter to receiver. The time consumption can be reduced by using data compression techniques. In this technique, it is possible to eliminate the redundant data contained in an image. The compressed image requires less memory space and less time to transmit in the form of information from transmitter to receiver. Artificial neural net- work with feed forward back propagation technique can be used for image compression. In this paper, the Bipolar Coding Technique is proposed and implemented for image compression and obtained the better results as compared to Principal Component Analysis (PCA) technique. However, the LM algorithm is also proposed and implemented which can acts as a powerful technique for image compression. It is observed that the Bipolar Coding and LM algorithm suits the best for image compression and processing applications.
文摘This work concerns the study of problems relating to the adaptive internal model control of DC motor in both cases conventional and neural. The most important aspects of design building blocks of adaptive internal model control are the choice of architectures, learning algorithms, and examples of learning. The choice of parametric adaptation algorithm for updating elements of the conventional adaptive internal model control shows limitations. To overcome these limitations, we chose the architectures of neural networks deduced from the conventional models and the Levenberg-marquardt during the adjustment of system parameters of the adaptive neural internal model control. The results of this latest control showed compensation for disturbance, good trajectory tracking performance and system stability.
文摘为了对大坝进行切实有效的监控,需要建立一个良好的大坝预测模型。针对传统BP(Back-Propagation)神经网络存在的收敛速度慢和泛化能力弱等缺陷,利用LM-BP(Levenberg Marquardt Back Propagation)算法对大坝变形进行预测,并根据丹江口大坝1996和1997两年的变形观测数据,对大坝挠度预测结果进行分析。结果表明,所建立的LM-BP神经网络的预测精度和收敛速度明显提高。