We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background...We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.展开更多
Rapid solidifiation is a kind of new process for enhancing the hardness and electrical conductivity of Cu-Cr-Zr copper alloy.The use of BP neural network(NN) is presented to model the non-linear relationship between p...Rapid solidifiation is a kind of new process for enhancing the hardness and electrical conductivity of Cu-Cr-Zr copper alloy.The use of BP neural network(NN) is presented to model the non-linear relationship between parameters of age hardening processes and the mechanical and electrical properties of rapdily solidified Cu-Cr-Zr alloy.The improved model is developed by the Levenberg-Marquardt training algorithm and the good generalization performance is demonstrated.So,an important foundation has been laid for optimisticaly controlling the rapidly solidified aging processes of Cu-Cr-Zr alloy.展开更多
In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrate...In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrates Levenberg-Marquardt(L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first,the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then,the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage,which can cause large computation cost and system instability.At last,the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation,while the k-trajectory algorithm is applied to further smooth trajectories.By a series of comparative experiments,the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.展开更多
The ultrasonic precipitation technique for preparing hydroxyapatite nanoparticles is a complex process that was strongly influenced by temperature, reaction time and ultrasonic power. The use of a modified artificial ...The ultrasonic precipitation technique for preparing hydroxyapatite nanoparticles is a complex process that was strongly influenced by temperature, reaction time and ultrasonic power. The use of a modified artificial neural network (ANN) was proposed to model the non-linear relationship between ultrasonic precipitation parameters and the hydroxyapatite content. The improved model for processing dataset and selecting its topology was developed using the Levenberg-Marquardt training algorithm and was trained with comprehensive dataset of hydroxyapatite nanoparticles collected from experimental data. A basic repository on the domain knowledge of ultrasonic precipitation process for the preparation of hydroxyapatite is established via sufficient data mining by the network. With the help of the repository stored in the trained network, the influence of preparation temperature, preparation time and ultrasonic sonicating power on the hydroxyapatite content can be analyzed and predicted. The results show that the ANN system is effective and successful in analyzing the influence of ultrasonic precipitation parameters on the preparation of hydroxyapatite nanoparticles.展开更多
As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the ...As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.展开更多
The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the mate...The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the material. This paper tries to use a supervised artificial neural network(ANN) to model the nonlinear relationship between parameters of isothermal CVI(ICVI) processes and physical properties of C/C composites. A model for preprocessing dataset and selecting its topology is developed using the Levenberg-Marquardt training algorithm and trained with comprehensive dataset of tubal C/C components collected from experimental data and abundant simulated data obtained by the finite element method. A basic repository on the domain knowledge of CVI processes is established via sufficient data mining by the network. With the help of the repository stored in the trained network, not only the time-dependent effects of parameters in CVI processes but also their coupling effects can be analyzed and predicted. The results show that the ANN system is effective and successful for optimizing CVI processes in fabrication of C/C composites.展开更多
文摘We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.
文摘Rapid solidifiation is a kind of new process for enhancing the hardness and electrical conductivity of Cu-Cr-Zr copper alloy.The use of BP neural network(NN) is presented to model the non-linear relationship between parameters of age hardening processes and the mechanical and electrical properties of rapdily solidified Cu-Cr-Zr alloy.The improved model is developed by the Levenberg-Marquardt training algorithm and the good generalization performance is demonstrated.So,an important foundation has been laid for optimisticaly controlling the rapidly solidified aging processes of Cu-Cr-Zr alloy.
基金Supported by the National Key Basic Research Program of China(973 Project)(No.2013CB035503)
文摘In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrates Levenberg-Marquardt(L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first,the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then,the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage,which can cause large computation cost and system instability.At last,the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation,while the k-trajectory algorithm is applied to further smooth trajectories.By a series of comparative experiments,the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.
文摘The ultrasonic precipitation technique for preparing hydroxyapatite nanoparticles is a complex process that was strongly influenced by temperature, reaction time and ultrasonic power. The use of a modified artificial neural network (ANN) was proposed to model the non-linear relationship between ultrasonic precipitation parameters and the hydroxyapatite content. The improved model for processing dataset and selecting its topology was developed using the Levenberg-Marquardt training algorithm and was trained with comprehensive dataset of hydroxyapatite nanoparticles collected from experimental data. A basic repository on the domain knowledge of ultrasonic precipitation process for the preparation of hydroxyapatite is established via sufficient data mining by the network. With the help of the repository stored in the trained network, the influence of preparation temperature, preparation time and ultrasonic sonicating power on the hydroxyapatite content can be analyzed and predicted. The results show that the ANN system is effective and successful in analyzing the influence of ultrasonic precipitation parameters on the preparation of hydroxyapatite nanoparticles.
基金Supported by the National Natural Science Foundation of China(No.61871021,51704115)。
文摘As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.
基金supported by the National Natural Science Foundation of China(Grant No.50072019)the Aeronautical Foundation of China under Grant No.99G53092
文摘The chemical vapor infiltration(CVI) process in fabrication of carbon-carbon composites is very complex and highly inefficient, which adds considerably to the cost of fabrication and limits the application of the material. This paper tries to use a supervised artificial neural network(ANN) to model the nonlinear relationship between parameters of isothermal CVI(ICVI) processes and physical properties of C/C composites. A model for preprocessing dataset and selecting its topology is developed using the Levenberg-Marquardt training algorithm and trained with comprehensive dataset of tubal C/C components collected from experimental data and abundant simulated data obtained by the finite element method. A basic repository on the domain knowledge of CVI processes is established via sufficient data mining by the network. With the help of the repository stored in the trained network, not only the time-dependent effects of parameters in CVI processes but also their coupling effects can be analyzed and predicted. The results show that the ANN system is effective and successful for optimizing CVI processes in fabrication of C/C composites.