We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background...We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.展开更多
In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrate...In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrates Levenberg-Marquardt(L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first,the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then,the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage,which can cause large computation cost and system instability.At last,the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation,while the k-trajectory algorithm is applied to further smooth trajectories.By a series of comparative experiments,the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.展开更多
As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the ...As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.展开更多
文摘We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.
基金Supported by the National Key Basic Research Program of China(973 Project)(No.2013CB035503)
文摘In order to overcome the inherent oscillation problem of potential field methods(PFMs) for autonomous mobile robots in the presence of obstacles and in narrow passages,an enhanced potential field method that integrates Levenberg-Marquardt(L-M) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first,the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then,the oscillation problem of the navigation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage,which can cause large computation cost and system instability.At last,the L-M algorithm is adopted to modify the search direction of the navigation function for alleviating the oscillation,while the k-trajectory algorithm is applied to further smooth trajectories.By a series of comparative experiments,the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth trajectories.
基金Supported by the National Natural Science Foundation of China(No.61871021,51704115)。
文摘As civil engineering technology development,the structural form selection is more and more critical in design of high-rise buildings.However,structural form selection involves expertise knowledge and changes with the environment which makes the task arduous.An approach utilizing improved back propagation(BP)neural network optimized by the Levenberg-Marquardt(L-M)algorithm is proposed to extract the main controlling factors of structural form selection.Then,an intelligent expert system with artificial neural network is constructed to design high-rise buildings structure effectively.The experiment tests the model in 15 well-known architecture samples and get the prediction accuracy of 93.33%.The results show that the method is feasible and can help designers select the appropriate structural form.