本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用...本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用来训练线性参数 .最后以辩识一个混沌系统为例进行了数值仿真 ,并与改进的 BP算法和单纯 L M算法进行了比较 。展开更多
文摘本文针对小波网络现有学习算法的不足 ,把 L evenberg- Marquardt算法 (简称 L M算法 )和最小二乘算法有机地结合在一起 ,提出了一种新的小波网络混合学习算法 .在该混合算法中 L M算法用来训练小波网络的非线性参数 ,而最小二乘算法用来训练线性参数 .最后以辩识一个混沌系统为例进行了数值仿真 ,并与改进的 BP算法和单纯 L M算法进行了比较 。