In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source loc...In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source localization algorithms,like Gauss-Newton algorithm and Conjugate gradient algorithm are subjected to the problems of local minima and good initial guess.This paper presents a new optimization technique to find the descent directions to avoid divergence,and a trust region method is introduced to accelerate the convergence rate.Compared with conventional methods,the new algorithm offers increased stability and is more robust,allowing for stronger non-linearity and wider convergence field to be identified.Simulation results demonstrate that the proposed algorithm improves the typical methods in both speed and robustness,and is able to avoid local minima.展开更多
Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture...Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those based on Kalman filtering approach.展开更多
The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to ...The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency.展开更多
We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background...We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.展开更多
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ...Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.展开更多
A new fuzzy optimization neural network model is proposed based on the Levenberg-Marquardt (LM) algorithm on account of the disadvantages of slow convergence of traditional fuzzy optimization neural network model. In ...A new fuzzy optimization neural network model is proposed based on the Levenberg-Marquardt (LM) algorithm on account of the disadvantages of slow convergence of traditional fuzzy optimization neural network model. In this new model,the gradient descent algorithm is replaced by the LM algorithm to obtain the minimum of output errors during network training,which changes the weights adjusting equations of the network and increases the training speed. Moreover,to avoid the results yielding to local minimum,the transfer function is also revised to sigmoid function. A case study is utilized to validate this new model,and the results reveal that the new model fast training speed and better forecasting capability.展开更多
Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique techniq...Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA7014061)
文摘In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source localization algorithms,like Gauss-Newton algorithm and Conjugate gradient algorithm are subjected to the problems of local minima and good initial guess.This paper presents a new optimization technique to find the descent directions to avoid divergence,and a trust region method is introduced to accelerate the convergence rate.Compared with conventional methods,the new algorithm offers increased stability and is more robust,allowing for stronger non-linearity and wider convergence field to be identified.Simulation results demonstrate that the proposed algorithm improves the typical methods in both speed and robustness,and is able to avoid local minima.
文摘Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those based on Kalman filtering approach.
基金supported by the National Natural Science Foundation of China under Grant 52077027.
文摘The permanent magnet eddy current coupler(PMEC)solves the problem of flexible connection and speed regulation between the motor and the load and is widely used in electrical transmission systems.It provides torque to the load and generates heat and losses,reducing its energy transfer efficiency.This issue has become an obstacle for PMEC to develop toward a higher power.This paper aims to improve the overall performance of PMEC through multi-objective optimization methods.Firstly,a PMEC modeling method based on the Levenberg-Marquardt back propagation(LMBP)neural network is proposed,aiming at the characteristics of the complex input-output relationship and the strong nonlinearity of PMEC.Then,a novel competition mechanism-based multi-objective particle swarm optimization algorithm(NCMOPSO)is proposed to find the optimal structural parameters of PMEC.Chaotic search and mutation strategies are used to improve the original algorithm,which improves the shortcomings of multi-objective particle swarm optimization(MOPSO),which is too fast to converge into a global optimum,and balances the convergence and diversity of the algorithm.In order to verify the superiority and applicability of the proposed algorithm,it is compared with several popular multi-objective optimization algorithms.Applying them to the optimization model of PMEC,the results show that the proposed algorithm has better comprehensive performance.Finally,a finite element simulation model is established using the optimal structural parameters obtained by the proposed algorithm to verify the optimization results.Compared with the prototype,the optimized PMEC has reduced eddy current losses by 1.7812 kW,increased output torque by 658.5 N·m,and decreased costs by 13%,improving energy transfer efficiency.
文摘We consider the inverse problem of finding cavities within some object from electrostatic measurements on the boundary. By a cavity we understand any object with a different electrical conductivity from the background material of the body. We give an algorithm for solving this inverse problem based on the output nonlinear least-square formulation and the regularized Newton-type iteration. In particular, we present a number of numerical results to highlight the potential and the limitations of this method.
文摘Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50579095)Ertan Hydropower Development Company, LTD.
文摘A new fuzzy optimization neural network model is proposed based on the Levenberg-Marquardt (LM) algorithm on account of the disadvantages of slow convergence of traditional fuzzy optimization neural network model. In this new model,the gradient descent algorithm is replaced by the LM algorithm to obtain the minimum of output errors during network training,which changes the weights adjusting equations of the network and increases the training speed. Moreover,to avoid the results yielding to local minimum,the transfer function is also revised to sigmoid function. A case study is utilized to validate this new model,and the results reveal that the new model fast training speed and better forecasting capability.
文摘Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.