Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimiz...Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions lead-ing to a significant reduction of the electronic repulsions in the orbitals of catalysts.Herein,we anchor the MgPc molecules on fluorinated carbon nanotubes(MgPc@FCNT),which exhibits the single active Mg sites with axial displacement.According to the density functional theory calculations,the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batter-ies.As a result,the MgPc@FCNT provides an initial capacity of 6.1 mAh cm^(-2) even when the high sulfur loading is 4.5 mg cm^(-2),and still maintains 5.1 mAh cm^(-2) after 100 cycles.This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.展开更多
Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Th...Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.展开更多
High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle ...High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries.展开更多
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze...Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.展开更多
The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of io...The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2).展开更多
Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trode...Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode.展开更多
Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe ...Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe CoN8@Gra not only possesses moderate adsorption energies towards Li2Snspecies,but also exhibits superior catalytic activity for both reduction and oxidation reactions of the sulfur cathode.Moreover,the metallic property of the diatomic catalysts can be well maintained after Li2Snadsorption,which could help the sulfur cathode to maintain high conductivity during the whole charge–discharge process.Given these exceptional properties,it is expected that Fe CoN8@Gra could be a promising diatomic catalyst for Li–S batteries and afford insights for further development of advanced Li–S batteries.展开更多
当前,现代检验医学已步入了一个以自动化、信息化、网络化为主要特征的新时期。检验水平和检测手段日新月异,临床检验工作日趋自动化、规范化、信息化,因而建立一套功能强大的实验室信息系统(laboratory information system,LIS)...当前,现代检验医学已步入了一个以自动化、信息化、网络化为主要特征的新时期。检验水平和检测手段日新月异,临床检验工作日趋自动化、规范化、信息化,因而建立一套功能强大的实验室信息系统(laboratory information system,LIS)是现代临床实验室必不可少的。如今的LIS已不仅仅局限于标本管理、数据采集、报告打印等简单的功能,信息技术的发展、医疗体制改革的要求以及各种严格的行业规范,将LIS推向了前所未有的高度。展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.22109140,U22A20107)Henan Provincial Science and Technology R&D Program Joint Fund(222301420001)+4 种基金Distinguished Young Scholars Innovation Team of Zhengzhou University(No.32320275)Higher Education Teaching Reform Research and Practice Project of Henan Province(2021SJGLX093Y)China Postdoctoral Science Foundation(2022M722866)International Talent Cooperation Program in Henan Province(No.HNGD2022036)the Postdoctoral Science Foundation of Zhengzhou University(22120030).
文摘Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions lead-ing to a significant reduction of the electronic repulsions in the orbitals of catalysts.Herein,we anchor the MgPc molecules on fluorinated carbon nanotubes(MgPc@FCNT),which exhibits the single active Mg sites with axial displacement.According to the density functional theory calculations,the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batter-ies.As a result,the MgPc@FCNT provides an initial capacity of 6.1 mAh cm^(-2) even when the high sulfur loading is 4.5 mg cm^(-2),and still maintains 5.1 mAh cm^(-2) after 100 cycles.This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.
基金supported by National Natural Science Foundation of China(No.U22A20118)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR146,2021ZZ122)Award Program for Fujian Minjiang Scholar Professorship。
文摘Lithium-sulfur(Li-S)system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice.However,the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into allsolid-state thin-film batteries,leading to inexperience in fabricating all-solid-state thin-film Li-S batteries(TFLSBs).Herein,for the first time,TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S(VGsLi2S)composite thin-film cathode,lithium-phosphorous-oxynitride(LiPON)thin-film solid electrolyte,and Li metal anode.Fundamentally eliminating Lipolysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an“unlimited Li”reservoir,which exhibits excellent longterm cycling stability with a capacity retention of 81%for 3,000 cycles,and an exceptional high temperature tolerance up to 60℃.More impressively,VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%.Collectively,this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.
基金supported by the National Natural Sci-ence Foundation of China(Nos.21975087,U1966214)the Certificate of China Postdoctoral Science Foundation Grant(2020M672337).
文摘High energy density and low cost made lithium–sulfur(Li–S)batteries appealing for the next-generation energy storage devices.However,their commercial viability is seriously challenged by serious polysulfide shuttle effect,sluggish sulfur kinetics,and uncontrollable dendritic Li growth.Herein,a dual-functional electrolyte additive,diphenyl ditelluride(DPDTe)is reported for Li–S battery.For sulfur cathodes,DPDTe works as a redox mediator to accelerate redox kinetics of sulfur,in which Te radical-mediated catalytic cycle at the solid–liquid interface contributes significantly to the whole process.For lithium anodes,DPDTe can react with lithium metal to form a smooth and stable organic–inorganic hybrid solid-electrolyte interphase(SEI),enabling homogeneous lithium deposition for suppressing dendrite growth.Consequently,the Li–S battery with DPDTe exhibits remarkable cycling stability and superb rate capability,with a high capacity up to 1227.3 mAh g^(-1)and stable cycling over 300 cycles.Moreover,a Li–S pouch cell with DPDTe is evaluated as the proof of concept.This work demonstrates that organotelluride compounds can be used as functional electrolyte additives and offers new insights and opportunities for practical Li–S batteries.
基金the Research Foundation-Flanders (FWO) for a Research Project (G0B3218N)the financial support by the National Natural Science Foundation of China (22005054)+3 种基金Natural Science Foundation of Fujian Province (2021J01149)State Key Laboratory of Structural Chemistry (20200007)Sichuan Science and Technology Program (project No.: 2022ZYD0016 and 2023JDRC0013)the National Natural Science Foundation of China (project No. 21776120)。
文摘Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials+2 种基金Southwest University of Science and Technology(Grant Nos.21fksy24 and 18ZD320304)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)。
文摘The defect chemistry is successfully modulated on free-standing and binder-free carbon cathodes for highly efficient Li-S redox reactions.Such rationally regulated defect engineering realizes the synchronization of ion/electron-conductive and defect-rich networks on the threedimension carbon cathode,leading to its tunable activity for both relieving the shuttle phenomenon and accelerating the sulfur redox reaction kinetics.As expected,the defective carbon cathode harvests a high rate capacity of 1217.8 mAh g^(-1)at 0.2 C and a superior capacity retention of61.7%at 2 C after 500 cycles.Even under the sulfur mass loading of 11.1 mg cm^(-2),the defective cathode still holds a remarkable areal capacity of 8.5 mAh cm^(-2).
基金supported by a grant from the Korea Evaluation Institute of Industrial Technology(KEIT)funded by the Ministry of Trade,Industry and Energy(MOTIE)(No.20012341)。
文摘Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode.
基金the National Natural Science Foundation of China(Grant Nos.51972140 and 51903164)the Fund from Science and Technology Department of Jilin Province,China(Grant No.20200201069JC).
文摘Fe/Co-based diatomic catalysts decorated on an N-doped graphene substrate are investigated by first-principles calculations to improve the electrochemical properties of Li–S batteries.Our results demonstrate that Fe CoN8@Gra not only possesses moderate adsorption energies towards Li2Snspecies,but also exhibits superior catalytic activity for both reduction and oxidation reactions of the sulfur cathode.Moreover,the metallic property of the diatomic catalysts can be well maintained after Li2Snadsorption,which could help the sulfur cathode to maintain high conductivity during the whole charge–discharge process.Given these exceptional properties,it is expected that Fe CoN8@Gra could be a promising diatomic catalyst for Li–S batteries and afford insights for further development of advanced Li–S batteries.
文摘当前,现代检验医学已步入了一个以自动化、信息化、网络化为主要特征的新时期。检验水平和检测手段日新月异,临床检验工作日趋自动化、规范化、信息化,因而建立一套功能强大的实验室信息系统(laboratory information system,LIS)是现代临床实验室必不可少的。如今的LIS已不仅仅局限于标本管理、数据采集、报告打印等简单的功能,信息技术的发展、医疗体制改革的要求以及各种严格的行业规范,将LIS推向了前所未有的高度。