Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galva...Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.展开更多
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
2LiFe1-xCoxPO4-Li3V2(P04)3/C was synthesized using Fel-2xCo2xVO4 as precursor which was prepared by a simple co-precipitation method. 2LiFej-xCoxPO4-Li3V2(PO4)3/C samples were characterized by X-ray diffraction (...2LiFe1-xCoxPO4-Li3V2(P04)3/C was synthesized using Fel-2xCo2xVO4 as precursor which was prepared by a simple co-precipitation method. 2LiFej-xCoxPO4-Li3V2(PO4)3/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. All 2LiFel-xCoxPOa-Li3V2(PO4)3/C composites are of the similar crystal structure. The XRD analysis and SEM images show that 2LiFe0.96Co0.04PO4-Li3V2(PO4)3/C sample has the best-ordered structure and the smallest particle size. The charge-discharge tests demonstrate that these powders have the best electrochemical properties with an initial discharge capacity of 144.1 mA.h/g and capacity retention of 95.6% after 100 cycles when cycled at a current density of 0.1C between 2.5 and 4.5 V.展开更多
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,...The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.展开更多
A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-typ...A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-type Li2FeSiO4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700 ℃ in 12 rain. And the obtained Li2FeSiO4 materials show better electrochemical performance and microstructure than those of Li2FeSiO4 sample by the conventional solidstate reaction. ?2009 Yan Bing Cao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an aver...This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodiumion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed.展开更多
In this work, we report a facile route for the synthesis of Li3V2(PO4)3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li3V2(PO...In this work, we report a facile route for the synthesis of Li3V2(PO4)3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li3V2(PO4)3/C is also investigated. When used as a lithium-ion battery cathode, the optimized Li3V2(PO4)3/C (LVP-800) through calcination at 800 ℃ exhibits a high initial charge and discharge capacity. The excellent electrochemical performance of LVP-800 is attributed to the good crystallinity and uniform morphology of the electrode material. In addition, the residual carbon can also improve the conductivity and buffer the volume expansion during the Li-ion extraction/reinsertion. Meanwhile, charge compensation also plays an important role in excellent electrochemical performance.展开更多
Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion ...Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion batteries(DIBs)can achieve high working voltage due to high intercalation potential of cathode.Herein,we propose a DIB configuration in which LTO is used as anode and the working voltage was 3.5 V.This DIB achieves a maximum specific energy of 140 Wh/kg at a specific power of 35 W/kg,and the specific power of 2933 W/kg can be obtained with a remaining specific energy of 11 Wh/kg.Traditional LIB material shows greatly improved properties in the DIB configuration.Thus,reversing its disadvantage leads to upgraded performance of batteries.Our configuration has also widened the horizon of materials for DIBs.展开更多
Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measuremen...Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure.展开更多
Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(...Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(12) (LTO)possesses high lithium ion conductivity, and it is also can be used as an active adsorbent for polysulfide. Herein, fine LTO particle coated carbon nanofibers(CNF) were prepared and a conductive network both for electron and lithium ion was built, which can greatly promote the electrochemical conversion of polysulfide and improve the rate performance of Li–S batteries. Meanwhile, a quantity of adsorption sites is constructed by defects of the surface of LTO-CNF membrane to effectively immobilize polysulfide. The multifunctional LTO-CNF interlayer could impede the shuttle effect and enhance comprehensive electrochemical performance of Li–S batteries, especially high rate performance. With such LTO-CNF interlayer,the Li–S battery presents a specific capacity of 641.9 mAh/g at 5 C rate. After 400 cycles at 1 C, a capacity of 618.0 mAh/g is retained. This work provides a feasible strategy to achieve high performance of Li–S battery for practical utilization.展开更多
In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2F...In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.展开更多
To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of...To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+).展开更多
基金Project (20771100) supported by the National Natural Science Foundation of China
文摘Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.
基金Project(51072233) supported by National Natural Science Foundation of China
文摘2LiFe1-xCoxPO4-Li3V2(P04)3/C was synthesized using Fel-2xCo2xVO4 as precursor which was prepared by a simple co-precipitation method. 2LiFej-xCoxPO4-Li3V2(PO4)3/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. All 2LiFel-xCoxPOa-Li3V2(PO4)3/C composites are of the similar crystal structure. The XRD analysis and SEM images show that 2LiFe0.96Co0.04PO4-Li3V2(PO4)3/C sample has the best-ordered structure and the smallest particle size. The charge-discharge tests demonstrate that these powders have the best electrochemical properties with an initial discharge capacity of 144.1 mA.h/g and capacity retention of 95.6% after 100 cycles when cycled at a current density of 0.1C between 2.5 and 4.5 V.
基金financial support from the National Natural Science Foundation of China(Grant Nos.51871188 and 51931006)the Fundamental Research Funds for the Central Universities of China(Xiamen University:Nos.20720200068,20720190007 and 20720220074)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010139)Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(HRTP-[2022]-22)the“Double-First Class”Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University。
文摘The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries.
基金supported by National Key Technology R&D Program of China(No.2007BAE12B01-1)Science and Technology Planning Program of Hunan Province,China(No.2008GK3015)
文摘A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-type Li2FeSiO4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700 ℃ in 12 rain. And the obtained Li2FeSiO4 materials show better electrochemical performance and microstructure than those of Li2FeSiO4 sample by the conventional solidstate reaction. ?2009 Yan Bing Cao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the National High Technology Research and Development Program of China (Grant No.2009AA033101)the National Basic Research Program of China (Grant No.2010CB833102)+2 种基金the National Natural Science Foundation of China (Grant No.50972164)the Chinese Academy of Sciences Project (Grant No.KJCX2-YW-W26)the Hundred-Talent Project of the Chinese Academy of Sciences
文摘This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodiumion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed.
基金supported by the National Key R&D Program of China(No.2016YFB0100500)
文摘In this work, we report a facile route for the synthesis of Li3V2(PO4)3/C cathode material via freezedrying and then calcination. The effect of calcination temperature on the electrochemical properties of the Li3V2(PO4)3/C is also investigated. When used as a lithium-ion battery cathode, the optimized Li3V2(PO4)3/C (LVP-800) through calcination at 800 ℃ exhibits a high initial charge and discharge capacity. The excellent electrochemical performance of LVP-800 is attributed to the good crystallinity and uniform morphology of the electrode material. In addition, the residual carbon can also improve the conductivity and buffer the volume expansion during the Li-ion extraction/reinsertion. Meanwhile, charge compensation also plays an important role in excellent electrochemical performance.
基金the financial supports from the National Natural Science Foundation of China (51932003, 51902050, 51872115 & 51802110)Program for the Development of Science and Technology of Jilin Province (20190201309JC)+4 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics (2018WNLOKF022)the Jilin Province/Jilin University co-Construction Project-Funds for New Materials (SXGJSF2017-3, Branch-2/440050316A36)Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universities JLU“Double-First Class” Discipline for Materials Science & Engineering.
文摘Li4Ti5O(12)(LTO)has drawn great attention due to its safety and stability in lithium-ion batteries(LIBs).However,high potential plateau at 1.5 V vs.Li reduces the cell voltage,leading to a limited use of LTO.Dual-ion batteries(DIBs)can achieve high working voltage due to high intercalation potential of cathode.Herein,we propose a DIB configuration in which LTO is used as anode and the working voltage was 3.5 V.This DIB achieves a maximum specific energy of 140 Wh/kg at a specific power of 35 W/kg,and the specific power of 2933 W/kg can be obtained with a remaining specific energy of 11 Wh/kg.Traditional LIB material shows greatly improved properties in the DIB configuration.Thus,reversing its disadvantage leads to upgraded performance of batteries.Our configuration has also widened the horizon of materials for DIBs.
基金supported by Guangxi Natural Science Foundation (0832259)Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning (GuiJiaoRen [2007]71)Research Funds of the Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment
文摘Y-doped Li3V2(PO4)3 cathode materials were prepared by a carbothermal reduction(CTR) process.The properties of the Y-doped Li3V2(PO4)3 were investigated by X-ray diffraction(XRD) and electrochemical measurements.XRD studies showed that the Y-doped Li3V2(PO4)3 had the same monoclinic structure as the undoped Li3V2(PO4)3.The Y-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram(CV), and electrochemical impedance spectra(EIS).The optimal doping content of Y was x=0.03 in Li3V2-xYx(PO4)3 system.The Y-doped Li3V2(PO4)3 samples showed a better cyclic ability.The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Y-doping.The improved electrochemical perormances of the Y-doped Li3V2(PO4)3 cathode materials were attributed to the addition of Y3+ ion by stabilizing the monoclinic structure.
基金supported by the National Key Basic Research Program of China (2014CB932400)the National Natural Science Foundation of China (51672156 and 51232005)+3 种基金Guangdong special support program (2015TQ01N401)Guangdong Province Technical Plan Project (2017B010119001 and 2017B090907005)Dongguan City (2015509119213)Shenzhen Technical Plan Project (JCYJ20170817161221958, JCYJ20170412170706047, JCYJ20170307153806471, and GJHS20170314165324888)
文摘Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(12) (LTO)possesses high lithium ion conductivity, and it is also can be used as an active adsorbent for polysulfide. Herein, fine LTO particle coated carbon nanofibers(CNF) were prepared and a conductive network both for electron and lithium ion was built, which can greatly promote the electrochemical conversion of polysulfide and improve the rate performance of Li–S batteries. Meanwhile, a quantity of adsorption sites is constructed by defects of the surface of LTO-CNF membrane to effectively immobilize polysulfide. The multifunctional LTO-CNF interlayer could impede the shuttle effect and enhance comprehensive electrochemical performance of Li–S batteries, especially high rate performance. With such LTO-CNF interlayer,the Li–S battery presents a specific capacity of 641.9 mAh/g at 5 C rate. After 400 cycles at 1 C, a capacity of 618.0 mAh/g is retained. This work provides a feasible strategy to achieve high performance of Li–S battery for practical utilization.
基金supported by the Programs of National 973(2011CB935900)NSFC(21231005)+1 种基金MOE(B12015 and 113016A)the Fundamental Research Funds for the Central Universities
文摘In this paper,we report on the preparation of Li2FeSiO4,sintered Li2FeSiO4,and Li2FeSiO4-C composite with spindle-like morphologies and their application as cathode materials of lithium-ion batteries.Spindle-like Li2FeSi04 was synthesized by a facile hydrothermal method with(NH4)2Fe(SO4)2 as the iron source.The spindle-like Li2FeSiO4 was sintered at 600 ℃ for 6 h in Ar atmosphere.Li2FeSiO4-C composite was obtained by the hydrothermal treatment of spindle-like Li2FeSiO4 in glucose solution at 190 ℃ for 3 h.Electrochemical measurements show that after carbon coating,the electrode performances such as discharge capacity and high-rate capability are greatly enhanced.In particular.Li2FeSiO4-C with carbon content of 7.21 wt%delivers the discharge capacities of 160.9 mAh·g-1 at room temperature and 213 mAh·g-1 at45℃(0.1 C),revealing the potential application in lithium-ion batteries.
基金Project(04JJ0388) supported by the National Science Foundation of Hunan Province, China
文摘To improve the performance of LiFePO4, single phase Li1-4xTixFePO4/C (x=0, 0.005, 0.010, 0.015) cathodes were synthesized by solid-state method. A certain content of glucose was used as carbon precursor and content of carbon in every final product was about 3.5%. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy observations(SEM), charge/discharge test, carbon analysis and electrochemical impedance spectroscopy(EIS). The results indicate that the prepared samples have ordered olivine structure and doping of the low concentration Ti^(4+) does not affect the structure of the samples. The electrochemical capabilities evaluated by charge-discharge test show that the sample with 1% Ti^(4+) (molar fraction) has good electrochemical performance delivering about an initial specific capacity of 146.7 mA·h/g at 0.3C rate. Electrochemical impedance spectroscopy measurement results show that the charge transfer resistance of the sample could be decreased greatly by doping an appropriate amount Ti^(4+).