期刊文献+
共找到25,679篇文章
< 1 2 250 >
每页显示 20 50 100
Novel interface engineering of LDH-based materials on Mg alloy for efficient photocatalytic systems considering the geometrical linearity of condensed phosphates 被引量:3
1
作者 Mosab Kaseem Ananda Repycha Safira Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期267-280,共14页
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g... This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications. 展开更多
关键词 Plasma electrolysis Layered Double Hydroxide Condensed phosphates Adsorption capacity Photocatalytic efficiency
下载PDF
Synthesis of a novel magnetic biomass-MOF composite for the efficient removal of phosphates:Adsorption mechanism and characterization study
2
作者 Aaron Albert Aryee Chenping Gao +1 位作者 Runping Han Lingbo Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期202-216,共15页
The adverse effects of eutrophication have prompted the use of various remediation techniques for phosphate(PO_(4)^(3-))removal owing to it being the major causative agent.Herein,the influence of different solvents an... The adverse effects of eutrophication have prompted the use of various remediation techniques for phosphate(PO_(4)^(3-))removal owing to it being the major causative agent.Herein,the influence of different solvents and ratios of 2-aminoterepthalicacid on the efficiency of magnetic biomass metal-organic framework composites based on the in situ growth of NH_(2)-MIL-101(Fe)onto magnetized peanut husks towards PO_(4)^(3-)removal was assessed via the adsorption technique.The magnetic biocomposite labelled as MPN@NH2-MIL-101(Fe)exhibited the best efficiency owing to its mesoporous structures and presence of abundant oxygen and nitrogen possessing functional groups.Adsorption results confirmed MPN@NH2-MIL-101(Fe)to have a high adsorption capacity of(14.0±0.3)mg·L^(-1)at a PO43-concentration of 20 mg·L^(-1)with an associated high stability within pH 2-10.The adsorption kinetics for the process was well described by both Elovich and pseudo-second-order kinetic models and was mediated by both internal diffusion and liquid film diffusion.The Temkin and Freundlich models fitted the equilibrium data well signifying occurrence of both physical and chemical adsorption on a heterogeneous surface.It is concluded that MPN@NH2-MIL-101(Fe)is a promising adsorbent for the effective removal of phosphate from a water body. 展开更多
关键词 Magnetic biomass-MOF composite Adsorption phosphate Mechanism
下载PDF
Differential roles of C-3 and C-6 phosphate monoesters in affecting potato starch properties
3
作者 Li Ding Andreas Blennow Yuyue Zhong 《Grain & Oil Science and Technology》 CAS 2024年第2期79-86,共8页
The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphor... The effects of starch phosphate monoester content(SPC),namely C-3(C3P)and C-6 phosphate monoesters(C6P),on the starch properties were investigated using four potato starches with varied SPC/C3P/C6P and two nonphosphorylated maize starches with a similar range of amylose content(AC)as controls.The starch property results showed that a higher SPC is associated with lower turbidity,storage and loss modulus after storage,and water solubility,but higher swelling power(SP)and pasting viscosities.These findings suggested that SPC inhibited molecular rearrangement during storage and starch leaching during heating,and enhanced swelling and viscosities due to increased hydration and water uptake caused by the repulsion effect of phosphate groups and a less ordered crystalline structure.Increased SPC also resulted in lower resistant starch(RS)content in a native granular state but higher RS after retrogradation.Pearson correlations further indicated that SPC/C3P/C6P were positively correlated with peak(r^(2)=0.925,0.873 and 0.930,respectively),trough(r^(2)=0.994,0.968 and 0.988,respectively),and final viscosities(r^(2)=0.981,0.968 and 0.971,respectively).Notably,SPC,mainly C3P,exhibited a significantly positive correlation with SP(r^(2)=0.859)and setback viscosity(r^(2)=0.867),whereas SPC,mainly C6P,showed a weak positive correlation with RS after retrogradation(r^(2)=0.746).However,SPC had no significant correlations with water solubility,turbidity and rheology properties,which were more correlated with AC.These findings are helpful for the food industry to select potato starches with desired properties based on their contents of SPC,C3P,or C6P. 展开更多
关键词 Starch phosphate monoesters C-3 phosphate monoesters C-6 phosphate monoesters Physicochemical properties In vitro digestibility
下载PDF
Effect of Fluoride on the Ion-association of Calcium Phosphate and Crystallization of Hydroxyapatite
4
作者 宋昊月 CAI Meng +1 位作者 袁萍 邹朝勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期831-838,共8页
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t... Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride. 展开更多
关键词 CRYSTALLIZATION amorphous calcium phosphate HYDROXYAPATITE FLUORIDE
下载PDF
Preparation and interface state of phosphate tailing-based geopolymers
5
作者 ZHANG Shou-xun XIE Xian +4 位作者 XIE Rui-qi TONG Xiong WU Yu-yao LI Jia-wen LI Yue 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1900-1914,共15页
The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop... The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings. 展开更多
关键词 phosphate tailing GEOPOLYMER interface state toxicity leaching
下载PDF
Efficient Removal of Phosphate from Aqueous Solutions Using Corundum-hollow-spheres Supported Caclined Hydrotalcite Porous Thin Films
6
作者 刘云才 ZHU Chen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期44-49,共6页
Phosphate was removed from aqueous environment by corundum-hollow-spheres supported caclined hydrotalcite (cHT) thin films. Mg-Al-CO3 hydrotalcite (HT) thin films were deposited on corundumhollow-sphere substrates by ... Phosphate was removed from aqueous environment by corundum-hollow-spheres supported caclined hydrotalcite (cHT) thin films. Mg-Al-CO3 hydrotalcite (HT) thin films were deposited on corundumhollow-sphere substrates by hydrothermal homogeneous precipitation at 120℃for 30-240 min and cHT thin films were obtained by annealing of the HT thin films at 500℃for 180 min. Their crystal phase, morphology and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).The results show that homogeneous, well-crystallized and hierarchical flower-like thin films were deposited firmly on the surface of the corundum. The mechanism of nucleation and growth of the HT thin films was fitted well with the anion coordination polyhedron growth unit model. To determine the absorption of phosphate by this adsorbent, different bed depth (10-30 cm) and flow rate (1.0-3.0 m L/min) were examined by column experiments. The highest removal efficiency of phosphate amounted to 98.5%under optimum condition (pH=7.2). The adsorption capacity increased as the bed depth increased and decreased as the flow rate increased. 展开更多
关键词 adsorption phosphatE HYDROTALCITE corundum-hollow-sphere hydrothermal homogeneous precipitation thermal anneal
下载PDF
In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites
7
作者 Peng Zhang Fukuan Li +6 位作者 Mingming He Silu Huo Xueli Zhang Benqiang Cen Dezhi Fang Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期126-137,共12页
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev... Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption. 展开更多
关键词 Electro-assisted adsorption ELECTROSORPTION phosphate removal Active centers MOF-derived carbon
下载PDF
Fluid-Related Performances and Compressive Strength of Clinker-Free Cementitious Backfill Material Based on Phosphate Tailings
8
作者 Jin Yang Senye Liu +3 位作者 Xingyang He Ying Su Jingyi Zeng Bohumír Strnadel 《Fluid Dynamics & Materials Processing》 EI 2024年第9期2077-2090,共14页
Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and o... Phosphate tailings are usually used as backfill material in order to recycle tailings resources.This study considers the effect of the mix proportions of clinker-free binders on the fluidity,compressive strength and other key performances of cementitious backfill materials based on phosphate tailings.In particular,three solid wastes,phosphogypsum(PG),semi-aqueous phosphogypsum(HPG)and calcium carbide slag(CS),were selected to activate wet ground granulated blast furnace slag(WGGBS)and three different phosphate tailings backfill materials were prepared.Fluidity,rheology,settling ratio,compressive strength,water resistance and ion leaching behavior of backfill materials were determined.According to the results,when either PG or HPG is used as the sole activator,the fluidity properties of the materials are enhanced.Phosphate tailings backfill material activated with PG present the largest fluidity and the lowest yield stress.Furthermore,the backfill material’s compressive strength is considerably increased to 2.9 MPa at 28 days after WGGBS activation using a mix of HPG and CS,all with a settling ratio of only 1.15 percent.Additionally,all the three ratios of binder have obvious solidification effects on heavy metal ions Cu and Zn,and P in phosphate tailings. 展开更多
关键词 FLUIDITY RHEOLOGY compressive strength phosphate tailing backfill material
下载PDF
Enhancing sustainability in phosphate ore processing:Performance of frying oil as alternative flotation collector for carbonate removal
9
作者 Asmae El-bahi Yassine Taha +2 位作者 Yassine Ait-Khouia Abdellatif Elghali Mostafa Benzaazoua 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期557-571,共15页
Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector design... Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing. 展开更多
关键词 Frying oils recycling phosphate beneficiation Flotation separation Green surfactants SUSTAINABILITY
下载PDF
Immunomodulatory activity of polycaprolactone nanoparticles with calcium phosphate salts against Leishmania infantum infection
10
作者 Kübra Kelleci Adil Allahverdiyev +2 位作者 Melahat Bağırova Murat Ihlamur EmrahŞefik Abamor 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第8期359-368,共10页
Objective:To prepare and characterize polycaprolactone(PCL)nanoparticles loaded with sonicator fragmented(SLA)and freeze-thaw Leishmania antigens(FTLA)and to investigate the in vitro immunogenicity of antigen-encapsul... Objective:To prepare and characterize polycaprolactone(PCL)nanoparticles loaded with sonicator fragmented(SLA)and freeze-thaw Leishmania antigens(FTLA)and to investigate the in vitro immunogenicity of antigen-encapsulated nanoparticles with calcium phosphate adjuvant.Methods:The water/oil/water binary emulsion solvent evaporation method was used to synthesize antigen-loaded PCL nanoparticles.Particles were characterized by scanning electron microscopy and zeta potential measurements.Their cytotoxicity in J774 macrophages in vitro was determined by MTT analysis.In addition,the amount of nitric oxide and the level of cytokines produced by macrophages were determined by Griess reaction and ELISA method,respectively.The protective effect of the developed formulations was evaluated by determining the infection index percentage in macrophages infected with Leishmania infantum.Results:Compared to the control group,SLA PCL and FTLA PCL nanoparticles with calcium phosphate adjuvant induced a 6-and 7-fold increase in nitric oxide,respectively.Additionally,the vaccine formulations promoted the production of IFN-γand IL-12.SLA PCL and FTLA PCL nanoparticles combined with calcium phosphate adjuvant caused an approximately 13-and 11-fold reduction in infection index,respectively,compared to the control group.Conclusions:The encapsulation of antigens obtained by both sonication and freeze-thawing into PCL nanoparticles and the formulations with calcium phosphate adjuvant show strong in vitro immune stimulating properties.Therefore,PCL-based antigen delivery systems and calcium phosphate adjuvant are recommended as a potential vaccine candidate against leishmaniasis. 展开更多
关键词 LEISHMANIASIS Calcium phosphate POLYCAPROLACTONE NANOPARTICLE Antigen delivery system ADJUVANT Vaccine design
下载PDF
Mitigating Iron Toxicity by Using Rock Phosphate to Improve Rice Productivity
11
作者 Adama Bagayogo Honoré Kam +5 位作者 Jacques Sawadogo Moumouni Konate Moussa Sie Satoshi Nakamura Fujio Nagumo Mahamadou Sawadogo 《Agricultural Sciences》 2024年第4期423-438,共16页
Iron toxicity is a major constraint to rice production, particularly in highly weathered soils of inland valleys in Sub-Saharan Africa where the rice growing area is rapidly expanding. This study aimed to improve the ... Iron toxicity is a major constraint to rice production, particularly in highly weathered soils of inland valleys in Sub-Saharan Africa where the rice growing area is rapidly expanding. This study aimed to improve the productiveness of iron toxicity sensitive’s rice fields as well as in the unsensitive fields by using local phosphate fertilizers. Eighteen (18) rice genotypes were been assessed in a split plot design in two areas: without iron toxicity and with iron toxicity. NPK, NK, Rock Phosphate, Triple super phosphate, Calcined phosphate and Acidulated phosphate were used as fertilizers. Data collection was focused on agronomic traits and yield (g/m<sup>2</sup>). The best fertilizers in the area without iron toxicity were NPK (820.2 g/m<sup>2</sup>) and triple super phosphate (751.7 g/m<sup>2</sup>). In the iron toxicity area, the best yields were performed by NPK (785.5 g/m<sup>2</sup>) and raw calcined phosphate (698.3 g/m<sup>2</sup>). Yet, the Accessions 15, Accessions 225, Accessions 226 and Accessions 270 were rainfed rice genotypes while CC109 A, HB 46 and HB 62 were low-land/irrigated rice genotypes. NPK, NK and acidulated phosphate fertilizers alleviate the best, iron toxicity in both sensitive and unsensitive rice fields. 展开更多
关键词 Oryza NPK NK Rock phosphate RICE
下载PDF
Preparation and Reinforcement Adaptability of Jute Fiber Reinforced Magnesium Phosphate Cement Based Composite Materials
12
作者 刘芯州 郭远臣 +3 位作者 WANG Rui XIANG Kai WANG Xue YE Qing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期999-1009,共11页
To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increas... To improve the brittleness characteristics of magnesium phosphate cement-based materials(MPC)and to promote its promotion and application in the field of structural reinforcement and repair,this study aimed to increase the toughness of MPC by adding jute fiber,explore the effects of different amounts of jute fiber on the working and mechanical properties of MPC,and prepare jute fiber reinforced magnesium phosphate cement-based materials(JFRMPC)to reinforce damaged beams.The improvement effect of beam performance before and after reinforcement was compared,and the strengthening and toughening mechanisms of jute fiber on MPC were explored through microscopic analysis.The experimental results show that,as the content of jute fiber(JF)increases,the fluidity and setting time of MPC decrease continuously;When the content of jute fiber is 0.8%,the compressive strength,flexural strength,and bonding strength of MPC at 28 days reach their maximum values,which are increased by 18.0%,20.5%,and 22.6%compared to those of M0,respectively.The beam strengthened with JFRMPC can withstand greater deformation,with a deflection of 2.3 times that of the unreinforced beam at failure.The strain of the steel bar is greatly reduced,and the initial crack and failure loads of the reinforced beam are increased by 192.1%and 16.1%,respectively,compared to those of the unreinforced beam.The JF added to the MPC matrix dissipates energy through tensile fracture and debonding pull-out,slowing down stress concentration and inhibiting the free development of cracks in the matrix,enabling JFRMPC to exhibit higher strength and better toughness.The JF does not cause the hydration of MPC to generate new compounds but reduces the amount of hydration products generated. 展开更多
关键词 magnesium phosphate cement jute fiber reinforcement of damaged beam flexural behavior
下载PDF
Nicotinamide adenine dinucleotide phosphate oxidase in pancreatic diseases:Mechanisms and future perspectives
13
作者 Ya-Wei Bi Long-Song Li +2 位作者 Nan Ru Bo Zhang Xiao Lei 《World Journal of Gastroenterology》 SCIE CAS 2024年第5期429-439,共11页
Pancreatitis and pancreatic cancer(PC)stand as the most worrisome ailments affecting the pancreas.Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases,yet their true nature continu... Pancreatitis and pancreatic cancer(PC)stand as the most worrisome ailments affecting the pancreas.Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases,yet their true nature continues to elude their grasp.Within this realm,oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC.Excessive accumulation of reactive oxygen species(ROS)can cause oxidative stress,and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides(NOX).NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells,activate pancreatic stellate cells,and mediate macrophage polarization.Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis,creating an oxidative microenvironment that can cause abnormal apoptosis,epithelial to mesenchymal transition and genomic instability.Therefore,understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases.In this review,we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders,aiming to provide novel insights into understanding the mechanisms underlying these diseases. 展开更多
关键词 Nicotinamide adenine dinucleotide phosphate hydrogen oxides PANCREATITIS Pancreatic cancer Reactive oxygen species MECHANISM
下载PDF
On the Impairment of Stress-Induced Changes in Triglyceride Levels via a Sub-Toxic Dose of Unmethylated Cytidine Phosphate Guanosine Oligodinucleotide (a Toll-Like Receptor 9 Ligand)
14
作者 Reiko Seki Kazuhisa Nishizawa 《Journal of Biosciences and Medicines》 2024年第9期95-112,共18页
Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidin... Changes in lipid metabolism have been implicated in protection against infectious diseases. In the first experiment of this study, we measured clinical lipid parameters in a murine model where the unmethylated cytidine phosphate guanosine (CpG) oligodinucleotide (ODN1826), a Toll-like receptor 9 (TLR9) agonist was administered in combination with D-galactosamine (GalN) that caused relatively liver-specific inflammation and toxicity. In the control mice group injected with phosphate-buffered saline (PBS) (acute psychological stress model associated with blood sampling), the serum triglyceride (TG) levels showed a rapid decrease followed by a rebound at 24 h as we have recently reported. However, such a TG rebound was impaired in the CpG/GalN- and solely CpG-treated groups of mice despite an absence of liver injury based on serum alanine aminotransferase levels in the latter group. Thus, the stress-associated serum TG rebound was abrogated by the injection of a sub-hepatotoxic CpG dose. In the second experiment, we simply measured the hepatic CD36 and SACRB1 (the gene for scavenger receptor B1 (SR-B1)) transcripts after the i.p. administration of PBS, CpG or CpG/GalN. There was a remarkable elevation of hepatic CD36 transcript expression in both the CpG- and CpG/GalN-treated mice at 8 h post-CpG injection whereas the increase in the PBS-treated mice was slower than the former two groups, suggesting that hepatic CD36 transcript expression is more pronounced in the combined stress models than under psychological stress alone. The individual mice data showed that the increase in CD36 expression was accompanied by a reduction in SCARB1 mRNA, showing reciprocal regulation between these two genes. Together with our previously reported findings, these data suggest that, in a murine model combining psychological stress with TLR-triggered hepatic inflammation, the psychological stress facilitates liver uptake of plasma TG (and its components fatty acids), but the subsequent re-esterification and/or release of TG-rich lipoproteins from the liver is impaired due to the concomitant TLR-signaling. We hypothesize that lipid metabolism during acute stress shifts toward an elevated hepatic uptake of lipids due to concomitant TLR signaling, facilitating the clearance of bacterial lipids by the liver. 展开更多
关键词 Toll-Like Receptor 9 Cytidine phosphate Guanosine Oligodinucleotide Scavenger Receptor B1 TRIGLYCERIDE Hepatic Inflammation
下载PDF
Biobased Furfurylated Poplar Wood for Flame-Retardant Modification with Boric Acid and Ammonium Dihydrogen Phosphate
15
作者 Ming Ni Lei Li +4 位作者 Yiqiang Wu Jianzheng Qiao Yan Qing Ping Li Yingfeng Zuo 《Journal of Renewable Materials》 EI CAS 2024年第8期1355-1368,共14页
Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood ... Furfurylated wood exhibits excellent dimensional stability and corrosion resistance,making it a promising material for constructing buildings,but it is highly flammable.Herein,flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid(BA)and ammonium dihydrogen phosphate(ADP)as flame-retardant components,and biomass-derived furfuryl alcohol(FA)as a modifier.The acidity of BA and ADP allowed them to catalyze the polymerization of FA,which formed a cross-linked network that immobilized BA and ADP inside the wood.The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s and reduced the total heat release and total smoke release by 58.75%and 77.31%,respectively.Analysis of the pyrolysis process showed that the decomposition products of BA and ADP protected the underlying furfurylated wood and diluted combustible gases.This method significantly improved the fire retardancy and smokeless properties of furfurylated wood,providing promising prospects for its application as an engineering material. 展开更多
关键词 Poplar wood furfuryl alcohol furfurylated wood flame retardancy boric acid ammonium dihydrogen phosphate
下载PDF
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries
16
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 Lithium iron phosphate battery Safety valve Thermal runaway Gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Effects of Inoculation with Phosphate Solubilizing Bacteria on the Physiology,Biochemistry,and Expression of Genes Related to the Protective Enzyme System of Fritillaria taipaiensis P.Y.Li
17
作者 Zhifen Shi Fumei Pan +6 位作者 Xiaotian Kong Jiaqi Lang Mingyan Ye Qian Wu Guangzhi Wang Liang Han Nong Zhou 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期247-260,共14页
Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly... Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li. 展开更多
关键词 Fritillaria taipaiensis P.Y.Li phosphate solubiliozing bacteria photosynthesis physiology and biochemistry protective enzymes
下载PDF
Bibliometric analysis of soil phosphate solubilizing microorganisms research using VOSviewer
18
作者 Xian-yuan Du Dan-dan Li +2 位作者 Qiang-wei Wang Han-yu Zhang Yang Yang 《Life Research》 2024年第1期10-15,共6页
Phosphorus-solubilizing microbes play key roles in improving phosphorus availability and in alleviating phosphorus nutrient limitation in soils. However, we did not have a comprehensive understanding of the overall re... Phosphorus-solubilizing microbes play key roles in improving phosphorus availability and in alleviating phosphorus nutrient limitation in soils. However, we did not have a comprehensive understanding of the overall research progress and development trend of phosphorus solubilizing microorganisms. In this study, we obtain documents from the Web of Science (WOS) core collection between 2002 and 2022, and a comprehensive review of the progress of global research on soil phosphate solubilizing microorganisms was conducted by using the VOSviewer bibliometric analysis tool. The results showed an increasing trend in the number of published articles from 2002 to 2022. India, accounting for 28% of the total number of published articles, became the most productive country. However, Canada was the country with the highest average citation frequency of articles. Chinese Academy of Sciences (CAS) was the greatest contributor with the most publications. Among the published journals, Frontiers in Microbiology, Applied Soil Ecology and Plant and Soil were the top three core journals in this field. Based on the keyword analysis, the assessment of the mechanisms between phosphorus solubilizing microbes and the soil carbon cycles with the different management practices became the new research trend among the scientific communities. These findings would provide an important reference value for future in-depth research on soil phosphate solubilizing microorganisms. 展开更多
关键词 SOIL phosphate solubilizing microorganisms BIBLIOMETRICS VOSviewe
下载PDF
Adsorption Effect of Phosphate Modified Grape Branch Biochar on Cd2
19
作者 Yu Han Yuming Yin +4 位作者 Hao Zhang Sijing Sun Zuzhi Huang Yishu Deng Li Bao 《Journal of Geoscience and Environment Protection》 2024年第4期59-77,共19页
Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of ma... Two major problems facing agriculture at present are soil pollution and the disposal of solid wastes generated during plant growth. The method of preparing biochar from solid wastes produced by plants is a means of maximizing the use of resources to combat the problem of soil pollution. In this study, we did not choose straw in the traditional sense but the waste branches from grape pruning, which has higher lignin cellulose, as the raw material. The biochar derived from grape branches pyrolyzed at 300˚C for two hours was utilized as a raw material to prepare modified biochar with varying concentrations of phosphoric acid. The adsorption performance and mechanism of Cd<sup>2 </sup> were explored through experiments involving different concentrations, addition amounts, reaction times, kinetic analyses, and isothermal adsorption tests. The findings indicated that the optimal adsorption of Cd<sup>2 </sup> occurred with a 20% phosphoric acid concentration, achieving the highest adsorption rate of 84.62%. At a dosage of 10 g/L, the maximum adsorption capacity reached 7.02 mg/g. The adsorption kinetics and isothermal adsorption of Cd<sup>2 </sup> on biochar modified with 0.2% phosphoric acid (0.2 PB) closely followed the pseudo-first-order kinetics model (R<sup>2</sup> > 0.98) and the Freundlich model (R<sup>2</sup> > 0.97), respectively. This suggests that the adsorption process involves both physical and chemical mechanisms. SEM and FTIR analyses revealed that phosphoric acid modification primarily increased the biochar’s specific surface area and enhanced certain original functional groups. The adsorption process predominantly involved rapid ion diffusion and chemical adsorption, as confirmed by kinetic analysis and isothermal adsorption model analysis. In summary, the adsorption efficiency of 0.2 PB significantly improved, showing potential and feasibility for heavy metal remediation in soil. This supports the environmentally friendly concept of “treating waste with waste”. 展开更多
关键词 phosphate Modified Grape Branch Biochar Adsorbs CD
下载PDF
Antimicrobial Activity, Structural, Crystallographic and Thermal Characteristics of Alpha-Titanium Phosphate Promoted by Silver Ions
20
作者 Enzo Erbisti Garcia Agnes Maria Cupertino Fernandes Araujo +6 位作者 Gerson Alberto Valencia Albitres Daniela de França da Silva Freitas Danielle Mattos Mariano Carlos Magno Fialho Soares Sibele Piedade Cestari Marco Antônio Lemos Miguel Luis Claudio Mendes 《Materials Sciences and Applications》 2024年第8期253-269,共17页
The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alph... The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alpha-titanium phosphate (α-TiP) nanoparticles were synthesized and treated with silver salt to enhance their antimicrobial properties. The physicochemical characteristics and antimicrobial activity were evaluated. It was revealed by X-ray diffraction analysis that the structural integrity of α-TiP was influenced by ethylenediamine and silver ions. Distinct degradation profiles for each chemical modification were shown by thermogravimetric analysis. Infrared spectroscopy detected shifts and new absorption peaks in the spectra depending on the type of modification. Energy dispersive spectroscopy confirmed the disaggregation of α-TiP galleries following the addition of silver salt, which increased their effectiveness against microorganisms. Notably, only the sample treated with silver ions exhibited antimicrobial action. Antimicrobial activity was tested against the bacteria of medical importance Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria momocytogenes and the yeast Candida albicans. All microorganisms were inhibited by sample containing silver. Minor inhibition was observed against the Gram-positive bacteria L. monocytogenes and Bacillus cereus, while the greatest inhibition occurred against the fungus (yeast) C. albicans. The results revealed a potential application of the nanoparticles for control of microorganisms in public health. 展开更多
关键词 Titanium phosphate Silver Nitrate Antimicrobial Action
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部