以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法...以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g^(-1)和215.8 m Ah·g^(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g^(-1)和106.2 m Ah·g^(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni^(2+)、Co^(3+)、Mn^(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。展开更多
以过渡金属硫酸盐和一水合氢氧化锂为原料,采用共沉淀-高温固相烧结法制备富锂正极材料Li[Li0.2Ni0.13Co0.13Mn0.54]O2。通过XRD、SEM和电池充放电测试方法考察了产物结构和性能,结果表明:在水浴50℃下控制p H=11合成的前驱体具有很好...以过渡金属硫酸盐和一水合氢氧化锂为原料,采用共沉淀-高温固相烧结法制备富锂正极材料Li[Li0.2Ni0.13Co0.13Mn0.54]O2。通过XRD、SEM和电池充放电测试方法考察了产物结构和性能,结果表明:在水浴50℃下控制p H=11合成的前驱体具有很好的分散性,且在950℃下烧结得到了优越的电化学性能;在0.1C(1C=300 m A/g)充放电时,首次放电比容量为258.9 m Ah/g(2.0~4.8 V),首次充放电效率为75.6%;在1C充放电时,首次放电比容量为204.6 m Ah/g,循环10次后放电比容量为179.9 m Ah/g;2C倍率下仍保持了141.4 m Ah/g的放电比容量。展开更多
利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响。结果表明:与前驱体中未加入葡萄糖所制备的材料相比...利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响。结果表明:与前驱体中未加入葡萄糖所制备的材料相比,掺葡萄糖后样品颗粒分布相对均匀,粒径变小,D50从11.56减小至9.94μm,比表面积增加近1倍。经0.05C充放电活化后,未掺葡萄糖和掺葡萄糖样品0.2C放电比容量分别为183.4、211.6 m Ah·g-1,2C容量分别为其0.2C的62.2%、77.6%。1C循环50次后放电比容量分别为133.3、173.6 m Ah·g-1,容量保持率分别为95.1%、100%。掺葡萄糖可降低首次不可逆容量损失,提高材料的倍率性能与循环稳定性,减少电荷传递阻抗、Warburg阻抗以及双电层弥散效应,但不改变材料的晶型结构。展开更多
采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1...采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料具有较好的多面体形貌,材料颗粒粒径小于500 nm。在2.0~4.8 V充放电区间内,在18 m A/g进行充放电,所制备材料的首次放电比容量达到209.0 m Ah/g,循环50次后容量保持率为87.7%。展开更多
文摘以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li_(1.0)Na_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na_(0.77)Mn O_(2.05)新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 m Ah·g^(-1)和215.8 m Ah·g^(-1),库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 m Ah·g^(-1)和106.2 m Ah·g^(-1)。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li_2Mn O_3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni^(2+)、Co^(3+)、Mn^(4+)所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。
文摘以过渡金属硫酸盐和一水合氢氧化锂为原料,采用共沉淀-高温固相烧结法制备富锂正极材料Li[Li0.2Ni0.13Co0.13Mn0.54]O2。通过XRD、SEM和电池充放电测试方法考察了产物结构和性能,结果表明:在水浴50℃下控制p H=11合成的前驱体具有很好的分散性,且在950℃下烧结得到了优越的电化学性能;在0.1C(1C=300 m A/g)充放电时,首次放电比容量为258.9 m Ah/g(2.0~4.8 V),首次充放电效率为75.6%;在1C充放电时,首次放电比容量为204.6 m Ah/g,循环10次后放电比容量为179.9 m Ah/g;2C倍率下仍保持了141.4 m Ah/g的放电比容量。
文摘利用XRD、SEM、EDS、BET、激光粒度、循环伏安、恒流充放电、交流阻抗方法研究了葡萄糖为碳源对溶胶凝胶法制备Li1.2Ni0.13Co0.13Mn0.54O2正极材料的结构、形貌以及电化学性能的影响。结果表明:与前驱体中未加入葡萄糖所制备的材料相比,掺葡萄糖后样品颗粒分布相对均匀,粒径变小,D50从11.56减小至9.94μm,比表面积增加近1倍。经0.05C充放电活化后,未掺葡萄糖和掺葡萄糖样品0.2C放电比容量分别为183.4、211.6 m Ah·g-1,2C容量分别为其0.2C的62.2%、77.6%。1C循环50次后放电比容量分别为133.3、173.6 m Ah·g-1,容量保持率分别为95.1%、100%。掺葡萄糖可降低首次不可逆容量损失,提高材料的倍率性能与循环稳定性,减少电荷传递阻抗、Warburg阻抗以及双电层弥散效应,但不改变材料的晶型结构。
文摘采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料具有较好的多面体形貌,材料颗粒粒径小于500 nm。在2.0~4.8 V充放电区间内,在18 m A/g进行充放电,所制备材料的首次放电比容量达到209.0 m Ah/g,循环50次后容量保持率为87.7%。