Li1.5Al0.5Ge1.5(PO4)3(LAGP)is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and high interfacial impedance when directly contacted with Li metal.In this work,we d...Li1.5Al0.5Ge1.5(PO4)3(LAGP)is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and high interfacial impedance when directly contacted with Li metal.In this work,we develop an inorganic/polymer hybrid interlayer composed of Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate)polymer electrolyte and SiO2 submicrospheres to stabilize the Li/LAGP interface.The polymeric component renders high ionic conductance and low interfacial resistance,whereas the inorganic component imparts flame retardancy and a physical barrier to the known Li-LAGP side reaction,together enabling stable Li stripping/plating for more than 1,500 h at room temperature.With this interlayer at both electrodes,all-solid-state Li∥LiFePO4 full cells with stable cycling performance are also demonstrated.展开更多
基金This work was supported by the US National Science Foundation(No.CBET-1903342)Y.R.H.acknowledges the exchange graduate student scholarship from the China Scholarship Council.Y.R.Z.acknowledges the Link Foundation Energy Fellowship.L.M.Q.acknowledges support from the Ministry of Science and Technology of China(No.2018YFA0703502)H.L.W.acknowledges the Sloan Research Fellowship.
文摘Li1.5Al0.5Ge1.5(PO4)3(LAGP)is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and high interfacial impedance when directly contacted with Li metal.In this work,we develop an inorganic/polymer hybrid interlayer composed of Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate)polymer electrolyte and SiO2 submicrospheres to stabilize the Li/LAGP interface.The polymeric component renders high ionic conductance and low interfacial resistance,whereas the inorganic component imparts flame retardancy and a physical barrier to the known Li-LAGP side reaction,together enabling stable Li stripping/plating for more than 1,500 h at room temperature.With this interlayer at both electrodes,all-solid-state Li∥LiFePO4 full cells with stable cycling performance are also demonstrated.