研究四氟硼酸锂(LiBF_4)和二氟草酸硼酸锂(LiODFB)混合锂盐电解液用于磷酸铁锂(LiFePO4)锂离子电池时的低温-20℃性能。探讨电导率与电解液组成、温度的关系;通过循环伏安、充放电、倍率性能及电化学阻抗谱(EIS)测试,比较不同电解液体系...研究四氟硼酸锂(LiBF_4)和二氟草酸硼酸锂(LiODFB)混合锂盐电解液用于磷酸铁锂(LiFePO4)锂离子电池时的低温-20℃性能。探讨电导率与电解液组成、温度的关系;通过循环伏安、充放电、倍率性能及电化学阻抗谱(EIS)测试,比较不同电解液体系中LiFePO_4正极在25℃和-20℃的放电比容量、循环稳定性等。在25℃和-20℃下于2.5~4.2 V充放电,LiFePO_4电极在LiBF_4/Li ODFB基电解液体系中的电化学性能较好:在25℃时以1.0 C倍率充放电,混合盐基电解液电池的首次放电比容量为140 m Ah/g,优于六氟磷酸锂(Li PF6)基电解液的130.5 m Ah/g;-20℃时0.1 C倍率下,首次放电比容量为101.7 m Ah/g,100次循环的容量保持率为86.62%,优于Li PF6基电解液的97.4 m Ah/g和60.57%。展开更多
To achieve good performance for LiFePO4-based batteries operated at a wide temperature range,mixed salts of LiBF4 LiBOB(lithium bis(oxalato)borate) and LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)-LiBOB ...To achieve good performance for LiFePO4-based batteries operated at a wide temperature range,mixed salts of LiBF4 LiBOB(lithium bis(oxalato)borate) and LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)-LiBOB were investigated as alternative lithium salts to LiPF6 in non-aqueous electrolytes.LiFePO4/Li half cells using LiPF6,LiBF4-LiBOB and LiTFSI-LiBOB slats as lithium salts were investigated by galvanostatic cycling,cyclic voltammetry,thermogravimetric analysis.The results show that LiBF4-LiBOB and LiTFSI-LiBOB mixed salts are much more thermally stable than LiPF6.Corrosion of Al foil in the LiTFSI-based electrolytes can be suppressed successfully by the addition of LiBOB as a co-salt.The electrochemical performance of LiBF4-LiBOB and LiTFSI-LiBOB mixed salts based cells are both better than that of LiPF6-based cell.LiTFSI-LiBOB mixed salt based electrolyte is considered to be a very promising electrolyte candidate for Li-ion batteries that will be used in wide-temperature applications.展开更多
Owing to the high specific capacity and high voltage,Ni-rich(LiNi0.8Co0.1Mn0.1O2,LNCM811)cathode has been considered as one of the most promising candidate cathode materials for next generation lithium ion batteries,w...Owing to the high specific capacity and high voltage,Ni-rich(LiNi0.8Co0.1Mn0.1O2,LNCM811)cathode has been considered as one of the most promising candidate cathode materials for next generation lithium ion batteries,whereas severe capacity fading greatly hinders its practical application.Notably,the compatibility of Ni-rich materials with LiBF4-containing electrolyte has not yet been realized.Herein,1 M LiPF6-based electrolyte with introducing 2 M LiBF4 is proposed to dramatically improve the cyclic stability of high voltage LNCM811/Li half-cell.Addition of high concentrated LiBF4 improves the moisture stability of electrolyte,which hinders the generation of harmful by-product HF,resulting in improved interfacial stability of LNCM811.Lithium plating/stripping reaction of Li/Li symmetric cell confirms that the enhanced cyclic stability is ascribed to the improved interfacial stability of LNCM811 instead of lithium electrode.Morphology and composition characterization results reveal that LiBF4 participates in the CEI film-forming reaction,resulting in suppressed oxidation of electrolyte and interfacial structural destruction of LNCM811.展开更多
The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the trad...The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the traditional graphite electrode system.In this study,we report the development of a novel electrode system fabricated by implantation of a solid electrolyte interphase(SEI)layer on the graphite surface.The SEI-implanted graphite electrode is made using a lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)-based electrolyte and cycled with a lithium tetrafluoroborate LiBF4-based electrolyte.This new electrode system shows significantly enhanced electrochemical properties owing to the rapid and efficient diffusion of Li ions through the SEI layer between the electrolyte and electrode.This graphite electrode with its pre-formed SEI layer achieves a reversible capacity of 357 mAh g^-1 at 0.5 C after 50 cycles,which is significantly higher than that of commercial lithium-ion battery systems constructed with LiPF6(312mAh g^-1).The resulting unique electrode system could present a new avenue in SEI research for highperformance lithium-ion batteries.展开更多
文摘研究四氟硼酸锂(LiBF_4)和二氟草酸硼酸锂(LiODFB)混合锂盐电解液用于磷酸铁锂(LiFePO4)锂离子电池时的低温-20℃性能。探讨电导率与电解液组成、温度的关系;通过循环伏安、充放电、倍率性能及电化学阻抗谱(EIS)测试,比较不同电解液体系中LiFePO_4正极在25℃和-20℃的放电比容量、循环稳定性等。在25℃和-20℃下于2.5~4.2 V充放电,LiFePO_4电极在LiBF_4/Li ODFB基电解液体系中的电化学性能较好:在25℃时以1.0 C倍率充放电,混合盐基电解液电池的首次放电比容量为140 m Ah/g,优于六氟磷酸锂(Li PF6)基电解液的130.5 m Ah/g;-20℃时0.1 C倍率下,首次放电比容量为101.7 m Ah/g,100次循环的容量保持率为86.62%,优于Li PF6基电解液的97.4 m Ah/g和60.57%。
基金Project(2013JSJJ027)supported by the Teacher Research Fund of Central South University,China
文摘To achieve good performance for LiFePO4-based batteries operated at a wide temperature range,mixed salts of LiBF4 LiBOB(lithium bis(oxalato)borate) and LiTFSI(lithium bis(trifluoromethanesulfonyl)imide)-LiBOB were investigated as alternative lithium salts to LiPF6 in non-aqueous electrolytes.LiFePO4/Li half cells using LiPF6,LiBF4-LiBOB and LiTFSI-LiBOB slats as lithium salts were investigated by galvanostatic cycling,cyclic voltammetry,thermogravimetric analysis.The results show that LiBF4-LiBOB and LiTFSI-LiBOB mixed salts are much more thermally stable than LiPF6.Corrosion of Al foil in the LiTFSI-based electrolytes can be suppressed successfully by the addition of LiBOB as a co-salt.The electrochemical performance of LiBF4-LiBOB and LiTFSI-LiBOB mixed salts based cells are both better than that of LiPF6-based cell.LiTFSI-LiBOB mixed salt based electrolyte is considered to be a very promising electrolyte candidate for Li-ion batteries that will be used in wide-temperature applications.
基金supported by the National Natural Science Foundation of China(21573080)the Guangdong Program for Support of Top-notch Young Professionals(2015TQ01N870)+1 种基金Distinguished Young Scholar(2017B030306013)the Science and Technology Planning Project of Guangdong Province(Grant no.2017B090901020)
文摘Owing to the high specific capacity and high voltage,Ni-rich(LiNi0.8Co0.1Mn0.1O2,LNCM811)cathode has been considered as one of the most promising candidate cathode materials for next generation lithium ion batteries,whereas severe capacity fading greatly hinders its practical application.Notably,the compatibility of Ni-rich materials with LiBF4-containing electrolyte has not yet been realized.Herein,1 M LiPF6-based electrolyte with introducing 2 M LiBF4 is proposed to dramatically improve the cyclic stability of high voltage LNCM811/Li half-cell.Addition of high concentrated LiBF4 improves the moisture stability of electrolyte,which hinders the generation of harmful by-product HF,resulting in improved interfacial stability of LNCM811.Lithium plating/stripping reaction of Li/Li symmetric cell confirms that the enhanced cyclic stability is ascribed to the improved interfacial stability of LNCM811 instead of lithium electrode.Morphology and composition characterization results reveal that LiBF4 participates in the CEI film-forming reaction,resulting in suppressed oxidation of electrolyte and interfacial structural destruction of LNCM811.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2019R1A2C2088174)。
文摘The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the traditional graphite electrode system.In this study,we report the development of a novel electrode system fabricated by implantation of a solid electrolyte interphase(SEI)layer on the graphite surface.The SEI-implanted graphite electrode is made using a lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)-based electrolyte and cycled with a lithium tetrafluoroborate LiBF4-based electrolyte.This new electrode system shows significantly enhanced electrochemical properties owing to the rapid and efficient diffusion of Li ions through the SEI layer between the electrolyte and electrode.This graphite electrode with its pre-formed SEI layer achieves a reversible capacity of 357 mAh g^-1 at 0.5 C after 50 cycles,which is significantly higher than that of commercial lithium-ion battery systems constructed with LiPF6(312mAh g^-1).The resulting unique electrode system could present a new avenue in SEI research for highperformance lithium-ion batteries.