Carbon nanotubes (CNTs) and acetylene black (AB) were dispersed synchronously or separately between LiFePO4 (LFP) particles as conducting agents during the course of manufacture of LiFePO4 cathodes. The morphology and...Carbon nanotubes (CNTs) and acetylene black (AB) were dispersed synchronously or separately between LiFePO4 (LFP) particles as conducting agents during the course of manufacture of LiFePO4 cathodes. The morphology and electrochemical performances of as-prepared LiFePO4 were evaluated by means of transmission electron microscopy (TEM), charge-discharge test, electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV). CNTs contribute to the interconnection of the isolated LiFePO4 or carbon particles. For the CNTs-modified LiFePO4, it exhibits excellent performance in terms of both specific capacity and cycle life. The initial discharge capacity is 147.9 mA·h/g at 0.2C rate and 134.2 mA·h/g at 1C rate, keeping a capacity retention ratio of 97% after 50 cycles. The results from EIS indicate that the impedance value of the solid electrolyte interface decreases. The cyclic voltammetric peak profiles is more symmetric and spiculate and there are fewer peaks. CNTs are promising conductive additives candidate for high-power Li-ion batteries.展开更多
Cathode material LiFePO4 of lithium-ion battery was synthesized by microwave heating. The "carbon-included" LiFePO4 with improved conductivity was synthesized by the addition of graphite. And the influence o...Cathode material LiFePO4 of lithium-ion battery was synthesized by microwave heating. The "carbon-included" LiFePO4 with improved conductivity was synthesized by the addition of graphite. And the influence of microwave-heating time on structure, morphology and charge/discharge performance of the products was discussed. The results of XRD, SEM, XPS, CV and charge/discharge testing measurements showed that the LiFePO4 product after 9 min in microwave oven had more advantages than other products.展开更多
采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,并用XRD ,SEM 和恒电流充放电对掺杂的LiFePO4 进行了研究。结果表明,少量的掺杂离子在很大程度上提高了LiFePO4 的电化学性能,特别是大电流放电性能。1.0 m ol% 的Nb5+掺杂Li...采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,并用XRD ,SEM 和恒电流充放电对掺杂的LiFePO4 进行了研究。结果表明,少量的掺杂离子在很大程度上提高了LiFePO4 的电化学性能,特别是大电流放电性能。1.0 m ol% 的Nb5+掺杂LiFePO4 的0.1 C 放电容量约150 m Ah·g-1;即使在3 C 倍率下放电,也有117 m Ah·g-1 的容量。掺杂的效果与掺杂离子的半径、价态密切相关,半径小、价态高的离子对提高LiFePO4 的电化学性能有利。在掺杂量较小时(<2.0 m ol% ),掺杂效果与掺杂离子的浓度关系不大。展开更多
Carbon coated LiFePO4 cathode material was synthesized by one-step solid-state reaction and characterized by X-ray diffraction (XRD), field-emission-scanning electron microscope (FESEM). Electrochemical performances o...Carbon coated LiFePO4 cathode material was synthesized by one-step solid-state reaction and characterized by X-ray diffraction (XRD), field-emission-scanning electron microscope (FESEM). Electrochemical performances of the material as cathode in lithium-ion battery were investigated at medium and elevated temperature (30 and 55 ℃) by galvanostatic charge-discharge and A.C. impedance tests. The results show that carbon coated LiFePO4 powder exhibits a well-crystallized olivine structure and spherical morphology with an average particle size of about 500 nm. Galvanostatic charge-discharge tests show that the reversible discharge capacity at 1 C and 1.5 C rates was improved from 121 and 105 mAh·g-1 at 30 ℃ to 136 and 123 mAh·g-1 at 55℃, respectively, while the enhancement of high temperature on electrochemical performance is less obvious at a rate lower than 0.5 C. Impedance spectra analyses indicate that the cathode material has a remarkably higher lithium-ion diffusivity at 55 ℃ than that at 30 ℃, which improves the electrochemical performance at high temperature.展开更多
采用高温固相法合成了LiFePO_4/C和Al、Mg共掺杂的LiFe_(0.95)Al_(0.03)Mg_(0.02)PO_4/C复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能量仪(EDS)、恒流充放电测试、循环伏安法(CV)等手段对材料的结构、形貌及电化学性能进行...采用高温固相法合成了LiFePO_4/C和Al、Mg共掺杂的LiFe_(0.95)Al_(0.03)Mg_(0.02)PO_4/C复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能量仪(EDS)、恒流充放电测试、循环伏安法(CV)等手段对材料的结构、形貌及电化学性能进行了表征。XRD结果表明,Al、Mg共掺杂后的样品并没有破坏LiFePO_4的橄榄石结构,同时还增强了LiFePO_4结构的稳定性、提高了电子导电性和Li+扩散速度;通过SEM和EDS观测到LiFePO_4呈球形颗粒,并在复合样品中检测到有Al和Mg元素存在。分别以0.5C、1C、3C和5C倍率充放电,LiFe_(0.95)Al_(0.03)Mg_(0.02)PO_4/C的放电比容量分别为145.1、142.6、133.2和124.9 m Ah/g; 1C倍率下循环30次后仍保持99.2%的初始容量,显示出良好的循环寿命。展开更多
用响应面法优化了低温碳热还原合成LiFePO4/C的工艺,用中心组合设计研究了蔗糖用量、焙烧温度、焙烧时间和低温反应温度四因素对放电比容量的影响。结果表明,放电比容量与四因素关系符合二次模型,焙烧温度和蔗糖量以及两者的交互作用对...用响应面法优化了低温碳热还原合成LiFePO4/C的工艺,用中心组合设计研究了蔗糖用量、焙烧温度、焙烧时间和低温反应温度四因素对放电比容量的影响。结果表明,放电比容量与四因素关系符合二次模型,焙烧温度和蔗糖量以及两者的交互作用对放电比容量影响较为显著,各个因素的二次方影响高度显著。由模型得出的最优操作条件为:焙烧温度718℃;焙烧时间10.88 h;蔗糖量0.866 g g 1LiFePO4;热处理温度105℃。该条件下LiFePO4/C的实际放电比容量为140.6 mA h g 1,与模型预测值142.03 mA h g 1无显著差异。展开更多
基金Project(06B002)supported by Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(09JJ3092)supported by Hunan Provincial Natural Science Foundation of ChinaProject(2008FJ3008)supported by the Planned Science and Technology Project of Hunan Province of China
文摘Carbon nanotubes (CNTs) and acetylene black (AB) were dispersed synchronously or separately between LiFePO4 (LFP) particles as conducting agents during the course of manufacture of LiFePO4 cathodes. The morphology and electrochemical performances of as-prepared LiFePO4 were evaluated by means of transmission electron microscopy (TEM), charge-discharge test, electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV). CNTs contribute to the interconnection of the isolated LiFePO4 or carbon particles. For the CNTs-modified LiFePO4, it exhibits excellent performance in terms of both specific capacity and cycle life. The initial discharge capacity is 147.9 mA·h/g at 0.2C rate and 134.2 mA·h/g at 1C rate, keeping a capacity retention ratio of 97% after 50 cycles. The results from EIS indicate that the impedance value of the solid electrolyte interface decreases. The cyclic voltammetric peak profiles is more symmetric and spiculate and there are fewer peaks. CNTs are promising conductive additives candidate for high-power Li-ion batteries.
文摘Cathode material LiFePO4 of lithium-ion battery was synthesized by microwave heating. The "carbon-included" LiFePO4 with improved conductivity was synthesized by the addition of graphite. And the influence of microwave-heating time on structure, morphology and charge/discharge performance of the products was discussed. The results of XRD, SEM, XPS, CV and charge/discharge testing measurements showed that the LiFePO4 product after 9 min in microwave oven had more advantages than other products.
文摘采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,并用XRD ,SEM 和恒电流充放电对掺杂的LiFePO4 进行了研究。结果表明,少量的掺杂离子在很大程度上提高了LiFePO4 的电化学性能,特别是大电流放电性能。1.0 m ol% 的Nb5+掺杂LiFePO4 的0.1 C 放电容量约150 m Ah·g-1;即使在3 C 倍率下放电,也有117 m Ah·g-1 的容量。掺杂的效果与掺杂离子的半径、价态密切相关,半径小、价态高的离子对提高LiFePO4 的电化学性能有利。在掺杂量较小时(<2.0 m ol% ),掺杂效果与掺杂离子的浓度关系不大。
文摘Carbon coated LiFePO4 cathode material was synthesized by one-step solid-state reaction and characterized by X-ray diffraction (XRD), field-emission-scanning electron microscope (FESEM). Electrochemical performances of the material as cathode in lithium-ion battery were investigated at medium and elevated temperature (30 and 55 ℃) by galvanostatic charge-discharge and A.C. impedance tests. The results show that carbon coated LiFePO4 powder exhibits a well-crystallized olivine structure and spherical morphology with an average particle size of about 500 nm. Galvanostatic charge-discharge tests show that the reversible discharge capacity at 1 C and 1.5 C rates was improved from 121 and 105 mAh·g-1 at 30 ℃ to 136 and 123 mAh·g-1 at 55℃, respectively, while the enhancement of high temperature on electrochemical performance is less obvious at a rate lower than 0.5 C. Impedance spectra analyses indicate that the cathode material has a remarkably higher lithium-ion diffusivity at 55 ℃ than that at 30 ℃, which improves the electrochemical performance at high temperature.
文摘采用高温固相法合成了LiFePO_4/C和Al、Mg共掺杂的LiFe_(0.95)Al_(0.03)Mg_(0.02)PO_4/C复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能量仪(EDS)、恒流充放电测试、循环伏安法(CV)等手段对材料的结构、形貌及电化学性能进行了表征。XRD结果表明,Al、Mg共掺杂后的样品并没有破坏LiFePO_4的橄榄石结构,同时还增强了LiFePO_4结构的稳定性、提高了电子导电性和Li+扩散速度;通过SEM和EDS观测到LiFePO_4呈球形颗粒,并在复合样品中检测到有Al和Mg元素存在。分别以0.5C、1C、3C和5C倍率充放电,LiFe_(0.95)Al_(0.03)Mg_(0.02)PO_4/C的放电比容量分别为145.1、142.6、133.2和124.9 m Ah/g; 1C倍率下循环30次后仍保持99.2%的初始容量,显示出良好的循环寿命。
文摘用响应面法优化了低温碳热还原合成LiFePO4/C的工艺,用中心组合设计研究了蔗糖用量、焙烧温度、焙烧时间和低温反应温度四因素对放电比容量的影响。结果表明,放电比容量与四因素关系符合二次模型,焙烧温度和蔗糖量以及两者的交互作用对放电比容量影响较为显著,各个因素的二次方影响高度显著。由模型得出的最优操作条件为:焙烧温度718℃;焙烧时间10.88 h;蔗糖量0.866 g g 1LiFePO4;热处理温度105℃。该条件下LiFePO4/C的实际放电比容量为140.6 mA h g 1,与模型预测值142.03 mA h g 1无显著差异。