期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Co^(2+)Doping on the Crystal Structure and Electrochemical Performance of LiFePO_4 被引量:1
1
作者 任强 杨旸 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第10期1477-1482,共6页
Co2+-doped LiFePO4/C composite material was prepared by solid-state synthesis method using Fe2O3,Li2CO3 and NH4H2PO4 as the starting materials.The structures and elec-trochemical performance of samples were studied b... Co2+-doped LiFePO4/C composite material was prepared by solid-state synthesis method using Fe2O3,Li2CO3 and NH4H2PO4 as the starting materials.The structures and elec-trochemical performance of samples were studied by XRD,SEM and constant current charge-discharge method.The results showed that the Co2+ doping did not change the crystal structure of LiFePO4.The unit cell volume changed with the increase of Co2+,and reached the maximum at x = 0.04.The LiFe0.96Co0.04PO4/C sample proved the best electrochemical properties.Its initial discharge capacity was 138.5 mA·h /g at 1 C rate.After 30 cycles,the capacity remained 127.7 mA·h /g,and the capacity retention rate was 92.2%. 展开更多
关键词 lifepo4/C cathod material Co2+-doping unit cell volume electrochemistry property
下载PDF
Effect of different carbon precursors on properties of LiFePO_4/C
2
作者 肖政伟 张英杰 胡国荣 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4507-4514,共8页
The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scannin... The anoxic decomposition and influence of carbon precursors on the properties of LiFePO_4/C prepared by using Fe_2O_3 were investigated.X-ray powder diffractometry,Fourier transform infrared spectroscopy(FTIR),scanning electron microscopy(SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes.Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate.Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling.All the chosen carbon precursors are capable of producing LiFePO_4 with high degree of crystallinity and purity.The carbon derived from α-D-glucose,pyromellitic anhydride,soluble starch,citric acid and polyacrylamide has a loose and porous texture in LiFePO_4/C which forms conduction on and between LiFePO_4 particles.LiFePO_4/C prepared by using α-D-glucose,pyromellitic anhydride,citric acid and sucrose exhibits appreciable electrochemical performance.Graphite alone is able to enhance the electrochemical performance of LiFePO_4 to a limited extent but incapable of preparing practical cathode. 展开更多
关键词 lifepo4 lithium ion cell carbon precursor DECOMPOSITION charge–discharge test graphite
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部