High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement ...High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement of frequency shift characteristics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift characteristics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.展开更多
We propose and demonstrate a novel variable PDL emulator based on a LiNbO3 modulator. The proposed emulator could vary the PDL values simply by adjusting the bias voltage of modulator. The results show that the propos...We propose and demonstrate a novel variable PDL emulator based on a LiNbO3 modulator. The proposed emulator could vary the PDL values simply by adjusting the bias voltage of modulator. The results show that the proposed PDL emulator could generate a wide range of PDL values (0 ~ 35 dB). The generated PDL value could be maintained within ±0.02 dB for >70 minutes. The wavelength dependency was about 0.03 dB in the range of 1520 nm~ 1590 nm.展开更多
Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance...Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.展开更多
基金supported by Program for New Century Excellent Talents in University under Grand No. NCET-06-0925.
文摘High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement of frequency shift characteristics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift characteristics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.
文摘We propose and demonstrate a novel variable PDL emulator based on a LiNbO3 modulator. The proposed emulator could vary the PDL values simply by adjusting the bias voltage of modulator. The results show that the proposed PDL emulator could generate a wide range of PDL values (0 ~ 35 dB). The generated PDL value could be maintained within ±0.02 dB for >70 minutes. The wavelength dependency was about 0.03 dB in the range of 1520 nm~ 1590 nm.
基金supported by the National Key Research and Development Program of China(2022YFF1001403)the Natural Science Foundation of Hebei Province,China(C2022204205)+1 种基金the National Natural Science Foundation of China(32372194)the National Top Talent Project and Hebei Top Talent,China。
文摘Improving plant resistance to Verticillium wilt(VW),which causes massive losses in Gossypium hirsutum,is a global challenge.Crop plants need to efficiently allocate their limited energy resources to maintain a balance between growth and defense.However,few transcriptional regulators specifically respond to Verticillium dahliae and the underlying mechanism has not been identified in cotton.In this study,we found that the that expression of most R2R3-MYB members in cotton is significantly changed by V.dahliae infection relative to the other MYB types.One novel R2R3-MYB transcription factor(TF)that specifically responds to V.dahliae,GhMYB3D5,was identified.GhMYB3D5 was not expressed in 15 cotton tissues under normal conditions,but it was dramatically induced by V.dahliae stress.We functionally characterized its positive role and underlying mechanism in VW resistance.Upon V.dahliae infection,the up-regulated GhMYB3D5 bound to the GhADH1 promoter and activated GhADH1expression.In addition,GhMYB3D5 physically interacted with GhADH1 and further enhanced the transcriptional activation of GhADH1.Consequently,the transcriptional regulatory module GhMYB3D5-GhADH1 then promoted lignin accumulation by improving the transcriptional levels of genes related to lignin biosynthesis(GhPAL,GhC4H,Gh4CL,and GhPOD/GhLAC)in cotton,thereby enhancing cotton VW resistance.Our results demonstrated that the GhMYB3D5 promotes defense-induced lignin accumulation,which can be regarded as an effective way to orchestrate plant immunity and growth.