The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activi...The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activity range of 0.01-1.00.A predominant co-region of LiNiO2,LiCoO2 and LiMnO2 oxides(Li-Ni-Co-Mncomposite oxide)is found in the Li-Ni-Co-Mn-H2O potential-pH diagrams,in which the co-precipitation region expands towards lower pH with rising temperature,indicating the enhanced possibility of synthesizing Li-Ni-Co-Mn composite oxide in aqueous solution.The experimental results prove that it is feasible to prepare the LiNi0.5Co0.2Mn0.3O2 cathode materials(NCM523)by an aqueous routine.The as-prepared lithiated precursor and NCM523 both inherit the spherical morphology of the hydroxide precursor and the obtained NCM523 has a hexagonalα-NaFeO2 structure with good crystallinity.It is reasonable to conclude that the aqueous routine for preparing NCM cathode materials is a promising method with the guidance of the reliable potential-pH diagrams to some extent.展开更多
All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high ener...All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability.展开更多
基金Project(FA2019015) supported by the Government of Chongzuo,Guangxi Zhuang Autonomous Region,ChinaProject(AD18281073) supported by Science and Technology Department of Guangxi Zhuang Autonomous Region,China
文摘The constructed potential-pH diagrams of Li-Ni(Co,Mn)-H2O system indicate that the LiNiO2,LiCoO2 and LiMnO2 are thermodynamically stable in aqueous solution within the temperature range of 25-200°C and the activity range of 0.01-1.00.A predominant co-region of LiNiO2,LiCoO2 and LiMnO2 oxides(Li-Ni-Co-Mncomposite oxide)is found in the Li-Ni-Co-Mn-H2O potential-pH diagrams,in which the co-precipitation region expands towards lower pH with rising temperature,indicating the enhanced possibility of synthesizing Li-Ni-Co-Mn composite oxide in aqueous solution.The experimental results prove that it is feasible to prepare the LiNi0.5Co0.2Mn0.3O2 cathode materials(NCM523)by an aqueous routine.The as-prepared lithiated precursor and NCM523 both inherit the spherical morphology of the hydroxide precursor and the obtained NCM523 has a hexagonalα-NaFeO2 structure with good crystallinity.It is reasonable to conclude that the aqueous routine for preparing NCM cathode materials is a promising method with the guidance of the reliable potential-pH diagrams to some extent.
基金supported by the National Natural Science Foundation of China (51575030, 51532002 and 51872027)Natural Science Foundation of Beijing Municipality (L172023)。
文摘All-solid-state lithium batteries(ASSLBs) based on sulfide solid-state electrolytes and high voltage layered oxide cathode are regarded as one of the most promising candidates for energy storage systems with high energy density and high safety.However,they usually suffer poor cathode/electrolyte interfacial stability,severely limiting their practical applications.In this work,a core-shell cathode with uniformly nanosized Li0.5La0.5TiO3(LLTO) electrolyte coating on LiNi0.5Co0.3Mn0.2O2(NCM532) is designed to improve the cathode/electrolyte interface stability.Nanosized LLTO coating layer not only significantly boosts interfacial migration of lithium ions,but also efficiently alleviates space-charge layer and inhibits the electrochemical decomposition of electrolyte.As a result,the assembled ASSLBs with high mass loading(9 mg cm-2)LLTO coated NCM532(LLTO@NCM532) cathode exhibit high initial capacity(135 mAh g^(-1)) and excellent cycling performance with high capacity retention(80% after 200 cycles) at 0.1 C and 25℃.This nanosized LLTO coating layer design provides a facile and effective strategy for constructing high performance ASSLBs with superior interfacial stability.