The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, ...The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss, mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level. U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±2.5 Ma, and biotite grains from the main detachment fault zone have ^40Ar-^39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover/basement contact, temporal and spatial coupling of extension and magmatism, basin development and evolution of fault tectonites along detachment fault zone. We propose that the exhumation of the Liaonan mcc resulted from regional extension and thinning of crust or lithosphere in eastern North China, and accompanied with synkinematic intrusion of granitic plutons, formation of detachment fault zone, uplifting and exhumation of lower-plate rocks, and appearance of supradetachment basin.展开更多
In this paper, we characterize the North Yellow Sea (NYS) water masses in summer by analyzing temperature and salinity data surveyed in 2006. The Liaonan Coastal Water is characterized by low salinity westward and s...In this paper, we characterize the North Yellow Sea (NYS) water masses in summer by analyzing temperature and salinity data surveyed in 2006. The Liaonan Coastal Water is characterized by low salinity westward and southward flow paths. The westward path flows parallel to land, turns to the south, then to the southeast adjacent to the mouth of the Lushun River, where it mixes with other coastal water directly to the southwest. It becomes the main source of low salinity water in the deep water area west of 123°E. The high-salinity Lubei Coastal Water is the remnant of the winter Lubei Coastal Water, which is located mostly in a small area between Yantai and Weihai, and does not originate in the Bohai Sea Coastal Water. The two NYS zones demarcated at 123°E have distinctly different temperature and salinity characteristics. There are two high-salinity centers east of 123°E, whereas there is low-salinity water to the west whose temperature and salinity structures are complex, composed of the coastal water south of Chengshantou, the Liaonan Coastal Water and the Bohai Sea Water.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.40472105,40510104086 and 40272084)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20040491003).
文摘The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss, mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level. U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±2.5 Ma, and biotite grains from the main detachment fault zone have ^40Ar-^39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover/basement contact, temporal and spatial coupling of extension and magmatism, basin development and evolution of fault tectonites along detachment fault zone. We propose that the exhumation of the Liaonan mcc resulted from regional extension and thinning of crust or lithosphere in eastern North China, and accompanied with synkinematic intrusion of granitic plutons, formation of detachment fault zone, uplifting and exhumation of lower-plate rocks, and appearance of supradetachment basin.
基金Supported by China’s National 908 Program (Nos. 908-01-ST02,908-02-02-02 908-02-02-03)+2 种基金National Natural Science Foundation of China (No. 40976001)National Basic Research Priorities Program (No. 2005CB422308)National High Technology Research and Development Program (863 Program,No. 2007AA092104)
文摘In this paper, we characterize the North Yellow Sea (NYS) water masses in summer by analyzing temperature and salinity data surveyed in 2006. The Liaonan Coastal Water is characterized by low salinity westward and southward flow paths. The westward path flows parallel to land, turns to the south, then to the southeast adjacent to the mouth of the Lushun River, where it mixes with other coastal water directly to the southwest. It becomes the main source of low salinity water in the deep water area west of 123°E. The high-salinity Lubei Coastal Water is the remnant of the winter Lubei Coastal Water, which is located mostly in a small area between Yantai and Weihai, and does not originate in the Bohai Sea Coastal Water. The two NYS zones demarcated at 123°E have distinctly different temperature and salinity characteristics. There are two high-salinity centers east of 123°E, whereas there is low-salinity water to the west whose temperature and salinity structures are complex, composed of the coastal water south of Chengshantou, the Liaonan Coastal Water and the Bohai Sea Water.