Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alter...Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.展开更多
In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is appr...In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula.展开更多
In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved dire...In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved directly. The Poisson equation is approximated by fourth-order finite differences and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results.展开更多
In this work we study two types of Discrete Hill’s equation. The first comes from the discretization process of a Continuous-time Hill’s equation, we called Discretized Hill’s equation. The Second is a naturally ob...In this work we study two types of Discrete Hill’s equation. The first comes from the discretization process of a Continuous-time Hill’s equation, we called Discretized Hill’s equation. The Second is a naturally obtained in Discrete-Time and will be called Discrete-time Hill’s equation. The objective of discretization is preserving the continuous-time behavior and we show this property. On the contrary a completely different dynamic property was found for the Discrete-Time Hill’s equation. At the end of the paper is shown that both types share the nonoscillatory behavior of solutions in the 0-th Arnold Tongue.展开更多
Chandrasekran-paul (1982) made an equation of drug release from matrix system as follows:In this paper a simplified expression has been deduced from it within ordinary range of experimental time and with appropriate v...Chandrasekran-paul (1982) made an equation of drug release from matrix system as follows:In this paper a simplified expression has been deduced from it within ordinary range of experimental time and with appropriate values of K. The cumulative amount of drug release may vary in directproportion to the square root of time with an intercept,that is,The release behaviour of both nifedipine patch and propranolol patch has fit the expression with good correlation coefficient.The re0lease data of hydrocortisone creams (Shah,1989)also can be described by the same expression.Compared with Higuchi’s equation,the presence of the intercept,A〃,may be relative to drug dissolution characteristics展开更多
The main aim of this paper is to define and study of a new Horn’s matrix function, say, the p and q-Horn’s matrix function of two complex variables. The radius of regularity on this function is given when the positi...The main aim of this paper is to define and study of a new Horn’s matrix function, say, the p and q-Horn’s matrix function of two complex variables. The radius of regularity on this function is given when the positive integers p and q are greater than one, an integral representation of pHq 2 is obtained, recurrence relations are established. Finally, we obtain a higher order partial differential equation satisfied by the p and q-Horn’s matrix function.展开更多
This paper derives a theorem of generalized singular value decomposition of quaternion matrices (QGSVD),studies the solution of general quaternion matrix equation AXB -CYD= E,and obtains quaternionic Roth's theorem...This paper derives a theorem of generalized singular value decomposition of quaternion matrices (QGSVD),studies the solution of general quaternion matrix equation AXB -CYD= E,and obtains quaternionic Roth's theorem. This paper also suggests sufficient and necessary conditions for the existence and uniqueness of solutions and explicit forms of the solutions of the equation.展开更多
We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solv...We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.展开更多
This work deals with a second order linear general equation with partial derivatives for a two-variable function. It covers a wide range of applications. This equation is solved with a finite difference hybrid method:...This work deals with a second order linear general equation with partial derivatives for a two-variable function. It covers a wide range of applications. This equation is solved with a finite difference hybrid method: BTCS + CTCS. This scheme is simple, precise, and economical in terms of time and space occupancy in memory.展开更多
The matrix equation AX-XB=C is quite well known and basic. It plays an important role in algebra and applied mathematics. This paper is an extension of the author’s previous work. Using the continued fraction associa...The matrix equation AX-XB=C is quite well known and basic. It plays an important role in algebra and applied mathematics. This paper is an extension of the author’s previous work. Using the continued fraction associated with A and B, one obtains a standard constructive formula of the solution X in an algebraic form. In contrast to other known results, it can simplify the numerical computation of X. When B=-A is asymptotically stable and C is a positive definite Hermitian matrix, the Hermitian form with the coefficient matrix X for a Liapunov function can be immediately decomposed as the sum of some nonnegative definite Hermitian forms by this formula.展开更多
Contrary to the opinion about approximation nature of a simple-iteration method, the exact solution of a system of linear algebraic equations (SLAE) in a finite number of iterations with a stationary matrix is demonst...Contrary to the opinion about approximation nature of a simple-iteration method, the exact solution of a system of linear algebraic equations (SLAE) in a finite number of iterations with a stationary matrix is demonstrated. We present a theorem and its proof that confirms the possibility to obtain the finite process and imposes the requirement for the matrix of SLAE. This matrix must be unipotent, i.e. all its eigenvalues to be equal to 1. An example of transformation of SLAE given analytically to the form with a unipotent matrix is presented. It is shown that splitting the unipotent matrix into identity and nilpotent ones results in Cramer’s analytical formulas in a finite number of iterations.展开更多
Symmetric circulant matrices (or shortly symmetric circulants) are a very special class of matrices sometimes arising in problems of discrete periodic convolutions with symmetric kernel. First, we collect major proper...Symmetric circulant matrices (or shortly symmetric circulants) are a very special class of matrices sometimes arising in problems of discrete periodic convolutions with symmetric kernel. First, we collect major properties of symmetric circulants scattered through the literature. Second, we report two new applications of these matrices to isotropic Markov chain models and electrical impedance tomography on a homogeneous disk with equidistant electrodes. A new special function is introduced for computation of the Ohm’s matrix. The latter application is illustrated with estimation of the resistivity of gelatin using an electrical impedance tomography setup.展开更多
文摘Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.
文摘In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula.
文摘In this work, by extending the method of Hockney into three dimensions, the Poisson’s equation in cylindrical coordinates system with the Dirichlet’s boundary conditions in a portion of a cylinder for is solved directly. The Poisson equation is approximated by fourth-order finite differences and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The accuracy of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results.
文摘In this work we study two types of Discrete Hill’s equation. The first comes from the discretization process of a Continuous-time Hill’s equation, we called Discretized Hill’s equation. The Second is a naturally obtained in Discrete-Time and will be called Discrete-time Hill’s equation. The objective of discretization is preserving the continuous-time behavior and we show this property. On the contrary a completely different dynamic property was found for the Discrete-Time Hill’s equation. At the end of the paper is shown that both types share the nonoscillatory behavior of solutions in the 0-th Arnold Tongue.
文摘Chandrasekran-paul (1982) made an equation of drug release from matrix system as follows:In this paper a simplified expression has been deduced from it within ordinary range of experimental time and with appropriate values of K. The cumulative amount of drug release may vary in directproportion to the square root of time with an intercept,that is,The release behaviour of both nifedipine patch and propranolol patch has fit the expression with good correlation coefficient.The re0lease data of hydrocortisone creams (Shah,1989)also can be described by the same expression.Compared with Higuchi’s equation,the presence of the intercept,A〃,may be relative to drug dissolution characteristics
文摘The main aim of this paper is to define and study of a new Horn’s matrix function, say, the p and q-Horn’s matrix function of two complex variables. The radius of regularity on this function is given when the positive integers p and q are greater than one, an integral representation of pHq 2 is obtained, recurrence relations are established. Finally, we obtain a higher order partial differential equation satisfied by the p and q-Horn’s matrix function.
文摘This paper derives a theorem of generalized singular value decomposition of quaternion matrices (QGSVD),studies the solution of general quaternion matrix equation AXB -CYD= E,and obtains quaternionic Roth's theorem. This paper also suggests sufficient and necessary conditions for the existence and uniqueness of solutions and explicit forms of the solutions of the equation.
基金Supported by The Special Funds For Major State Basic Research Projects (No. G1999032803) The China NNSF 0utstanding Young Scientist Foundation (No. 10525102)+1 种基金 The National Natural Science Foundation (No. 10471146) The National Basic Research Program (No. 2005CB321702), P.R. China.
文摘We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.
文摘This work deals with a second order linear general equation with partial derivatives for a two-variable function. It covers a wide range of applications. This equation is solved with a finite difference hybrid method: BTCS + CTCS. This scheme is simple, precise, and economical in terms of time and space occupancy in memory.
文摘The matrix equation AX-XB=C is quite well known and basic. It plays an important role in algebra and applied mathematics. This paper is an extension of the author’s previous work. Using the continued fraction associated with A and B, one obtains a standard constructive formula of the solution X in an algebraic form. In contrast to other known results, it can simplify the numerical computation of X. When B=-A is asymptotically stable and C is a positive definite Hermitian matrix, the Hermitian form with the coefficient matrix X for a Liapunov function can be immediately decomposed as the sum of some nonnegative definite Hermitian forms by this formula.
文摘Contrary to the opinion about approximation nature of a simple-iteration method, the exact solution of a system of linear algebraic equations (SLAE) in a finite number of iterations with a stationary matrix is demonstrated. We present a theorem and its proof that confirms the possibility to obtain the finite process and imposes the requirement for the matrix of SLAE. This matrix must be unipotent, i.e. all its eigenvalues to be equal to 1. An example of transformation of SLAE given analytically to the form with a unipotent matrix is presented. It is shown that splitting the unipotent matrix into identity and nilpotent ones results in Cramer’s analytical formulas in a finite number of iterations.
文摘Symmetric circulant matrices (or shortly symmetric circulants) are a very special class of matrices sometimes arising in problems of discrete periodic convolutions with symmetric kernel. First, we collect major properties of symmetric circulants scattered through the literature. Second, we report two new applications of these matrices to isotropic Markov chain models and electrical impedance tomography on a homogeneous disk with equidistant electrodes. A new special function is introduced for computation of the Ohm’s matrix. The latter application is illustrated with estimation of the resistivity of gelatin using an electrical impedance tomography setup.