Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
The simple modules for electrical Lie algebra of type D5 were investigated.The sufficient and necessary criteria of the simple Z-graded highest weight modules were established by means of determining the singular vect...The simple modules for electrical Lie algebra of type D5 were investigated.The sufficient and necessary criteria of the simple Z-graded highest weight modules were established by means of determining the singular vectors of the Verma modules.The simple highest weight module is isomorphic to either that for the symplectic Lie algebra sp4 or Verma module.展开更多
A root system is any collection of vectors that has properties that satisfy the roots of a semi simple Lie algebra. If g is semi simple, then the root system A, (Q) can be described as a system of vectors in a Euclide...A root system is any collection of vectors that has properties that satisfy the roots of a semi simple Lie algebra. If g is semi simple, then the root system A, (Q) can be described as a system of vectors in a Euclidean vector space that possesses some remarkable symmetries and completely defines the Lie algebra of g. The purpose of this paper is to show the essentiality of the root system on the Lie algebra. In addition, the paper will mention the connection between the root system and Ways chambers. In addition, we will show Dynkin diagrams, which are an integral part of the root system.展开更多
The finite-dimensional indecomposable solvable Lie algebras s with Q2n+1as their nilradical are studied and classified, it turns out that the dimension of s is dim Q2n+1+1.Then the Hom-Lie algebra structures on solvab...The finite-dimensional indecomposable solvable Lie algebras s with Q2n+1as their nilradical are studied and classified, it turns out that the dimension of s is dim Q2n+1+1.Then the Hom-Lie algebra structures on solvable Lie algebras s are calculated.展开更多
In this paper, we study the Lie algebras in which every subspace is its subalgebra (denoted by HB Lie algebras). We get that a nonabelian Lie algebra is an HB Lie algebra if and only if it is isomorphic to g+Cidg, ...In this paper, we study the Lie algebras in which every subspace is its subalgebra (denoted by HB Lie algebras). We get that a nonabelian Lie algebra is an HB Lie algebra if and only if it is isomorphic to g+Cidg, where g is an abelian Lie algebra. Moreover we show that the derivation algebra and the holomorph of a nonabelian HB Lie algebra are complete.展开更多
In this paper,we will give the definition of completable nilpotent Lie algebras,discuss its decomposition and prove that the heisenberg algebras and extensions of abelian quadratic Lie algebras are all completable nil...In this paper,we will give the definition of completable nilpotent Lie algebras,discuss its decomposition and prove that the heisenberg algebras and extensions of abelian quadratic Lie algebras are all completable nilpotent Lie algebras.展开更多
In this paper we explicitly determine the derivation algebra of a quasi Rn-filiform Lie algebra and prove that a quasi Rn-filiform Lie algebra is a completable nilpotent Lie algebra.
In this paper, based on the existing research results, we obtain the unary extension 3-Lie algebras by one-dimensional extension of the known Lie algebra L. For two known 3-Lie algebras <em>H</em>, <em&...In this paper, based on the existing research results, we obtain the unary extension 3-Lie algebras by one-dimensional extension of the known Lie algebra L. For two known 3-Lie algebras <em>H</em>, <em>M</em>, the (<i>μ</i>, <i>ρ</i>, <i>β</i>)-extension of <em>H</em> through <em>M</em> is given, and the necessary and sufficient conditions for the (<i>μ</i>, <i>ρ</i>, <i>β</i>)-extension algebra of <em>H</em> through <em>M</em> being 3-Lie algebra are obtained, and the structural characteristics and properties of these two kinds of extended 3-Lie algebras are given.展开更多
In this paper, we mainly investigate the realization of 3-Lie algebras from a family of Lie algebras. We prove the realization theorem, offer a concrete example realizing all type of 4-dimensional 3-Lie algebras, and ...In this paper, we mainly investigate the realization of 3-Lie algebras from a family of Lie algebras. We prove the realization theorem, offer a concrete example realizing all type of 4-dimensional 3-Lie algebras, and also give some properties about semi-simple n-Lie algebras.展开更多
The authors have recently completed a partial classification of the ten-dimensional real Lie algebras that have the non-trivial Levi decomposition, namely, for such algebras whose semi-simple factor is so(3). In the p...The authors have recently completed a partial classification of the ten-dimensional real Lie algebras that have the non-trivial Levi decomposition, namely, for such algebras whose semi-simple factor is so(3). In the present paper, we obtain a matrix representation for each of these Lie algebras. We are able to find such representations by exploiting properties of the radical, principally, when it has a trivial center, in which case we can obtain such a representation by restricting the adjoint representation. Another important subclass of algebras is where the radical has a codimension one abelian nilradical and for which a representation can readily be found. In general, finding matrix representations for abstract Lie algebras is difficult and there is no algorithmic process, nor is it at all easy to program by computer, even for algebras of low dimension. The present paper represents another step in our efforts to find linear representations for all the low dimensional abstract Lie algebras.展开更多
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational ide...Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.展开更多
Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, t...Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.展开更多
Non-commutative Poisson algebras are the algebras having both an associa- tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures...Non-commutative Poisson algebras are the algebras having both an associa- tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on the Lie algebras sln(Cq^-) are determined.展开更多
Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra i...Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules.展开更多
By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimens...By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimensional complex Lie algebras constructed by using linear transformations.The equivalent Lie algebras of the later two with multi-component forms are obtained as well.As their applications,we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.展开更多
Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,acco...Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.展开更多
In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solva...In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solvable Lie algebras with filiform Rn nilradicals is complete.展开更多
Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
We study polynomial representations of finite dimensional (R or C) Lie algebras. As a total classification, we show that there are altogether three types of such nontrivial representations and give their subtle stru...We study polynomial representations of finite dimensional (R or C) Lie algebras. As a total classification, we show that there are altogether three types of such nontrivial representations and give their subtle structures.展开更多
In this paper, the representation theory for the arlene Lie algebra H4 associated to the Nappi-Witten Lie algebra H4 is studied. Polynomial representations of the affine Nappi-Witten Lie algebra H4 are given.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
基金Fundamental Research Funds for the Central Universities,China(No.2232021G13)。
文摘The simple modules for electrical Lie algebra of type D5 were investigated.The sufficient and necessary criteria of the simple Z-graded highest weight modules were established by means of determining the singular vectors of the Verma modules.The simple highest weight module is isomorphic to either that for the symplectic Lie algebra sp4 or Verma module.
文摘A root system is any collection of vectors that has properties that satisfy the roots of a semi simple Lie algebra. If g is semi simple, then the root system A, (Q) can be described as a system of vectors in a Euclidean vector space that possesses some remarkable symmetries and completely defines the Lie algebra of g. The purpose of this paper is to show the essentiality of the root system on the Lie algebra. In addition, the paper will mention the connection between the root system and Ways chambers. In addition, we will show Dynkin diagrams, which are an integral part of the root system.
基金Foundation item: Supported by the National Natural Science Foundation of China(11071187) Supported by the Natural Science Foundation of Henan Province(13A110785)
文摘The finite-dimensional indecomposable solvable Lie algebras s with Q2n+1as their nilradical are studied and classified, it turns out that the dimension of s is dim Q2n+1+1.Then the Hom-Lie algebra structures on solvable Lie algebras s are calculated.
文摘In this paper, we study the Lie algebras in which every subspace is its subalgebra (denoted by HB Lie algebras). We get that a nonabelian Lie algebra is an HB Lie algebra if and only if it is isomorphic to g+Cidg, where g is an abelian Lie algebra. Moreover we show that the derivation algebra and the holomorph of a nonabelian HB Lie algebra are complete.
基金Supported by National Science Foundation of Jiangau.
文摘In this paper,we will give the definition of completable nilpotent Lie algebras,discuss its decomposition and prove that the heisenberg algebras and extensions of abelian quadratic Lie algebras are all completable nilpotent Lie algebras.
文摘In this paper we explicitly determine the derivation algebra of a quasi Rn-filiform Lie algebra and prove that a quasi Rn-filiform Lie algebra is a completable nilpotent Lie algebra.
文摘In this paper, based on the existing research results, we obtain the unary extension 3-Lie algebras by one-dimensional extension of the known Lie algebra L. For two known 3-Lie algebras <em>H</em>, <em>M</em>, the (<i>μ</i>, <i>ρ</i>, <i>β</i>)-extension of <em>H</em> through <em>M</em> is given, and the necessary and sufficient conditions for the (<i>μ</i>, <i>ρ</i>, <i>β</i>)-extension algebra of <em>H</em> through <em>M</em> being 3-Lie algebra are obtained, and the structural characteristics and properties of these two kinds of extended 3-Lie algebras are given.
文摘In this paper, we mainly investigate the realization of 3-Lie algebras from a family of Lie algebras. We prove the realization theorem, offer a concrete example realizing all type of 4-dimensional 3-Lie algebras, and also give some properties about semi-simple n-Lie algebras.
文摘The authors have recently completed a partial classification of the ten-dimensional real Lie algebras that have the non-trivial Levi decomposition, namely, for such algebras whose semi-simple factor is so(3). In the present paper, we obtain a matrix representation for each of these Lie algebras. We are able to find such representations by exploiting properties of the radical, principally, when it has a trivial center, in which case we can obtain such a representation by restricting the adjoint representation. Another important subclass of algebras is where the radical has a codimension one abelian nilradical and for which a representation can readily be found. In general, finding matrix representations for abstract Lie algebras is difficult and there is no algorithmic process, nor is it at all easy to program by computer, even for algebras of low dimension. The present paper represents another step in our efforts to find linear representations for all the low dimensional abstract Lie algebras.
基金Supported by the Fundamental Research Funds of the Central University under Grant No. 2010LKS808the Natural Science Foundation of Shandong Province under Grant No. ZR2009AL021
文摘Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti- Johnson (G J) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their ttamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘Three kinds of higher-dimensional Lie algebras are given which can be used to directly construct integrable couplings of the soliton integrable systems. The relations between the Lie algebras are discussed. Finally, the integrable couplings and the Hamiltonian structure of Giachetti-Johnson hierarchy and a new integrable system are obtained, respectively.
基金supported by NSF of China(11071187)Innovation Program of Shanghai Municipal Education Commission(09YZ336)
文摘Non-commutative Poisson algebras are the algebras having both an associa- tive algebra structure and a Lie algebra structure together with the Leibniz law. In this paper, the non-commutative poisson algebra structures on the Lie algebras sln(Cq^-) are determined.
基金The National Natural Science Foundation of China(No.10871042)
文摘Let (C, C) be a braided monoidal category. The relationship between the braided Lie algebra and the left Jacobi braided Lie algebra in the category (C, C) is investigated. First, a braided C2-commutative algebra in the category (C, C) is defined and three equations on the braiding in the category (C, C) are proved. Secondly, it is verified that (A, [, ] ) is a left (strict) Jacobi braided Lie algebra if and only if (A, [, ] ) is a braided Lie algebra, where A is an associative algebra in the category (C, C). Finally, as an application, the structures of braided Lie algebras are given in the category of Yetter-Drinfel'd modules and the category of Hopf bimodules.
文摘By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimensional complex Lie algebras constructed by using linear transformations.The equivalent Lie algebras of the later two with multi-component forms are obtained as well.As their applications,we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.
基金Supported by Zhejiang Province Foundation for Distinguished Young Scholars of China(Grant No.LR18E050003)National Natural Science Foundation of China(Grant Nos.51975523,51475424,51905481)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906).
文摘Advanced mathematical tools are used to conduct research on the kinematics analysis of hybrid mechanisms,and the generalized analysis method and concise kinematics transfer matrix are obtained.In this study,first,according to the kinematics analysis of serial mechanisms,the basic principles of Lie groups and Lie algebras are briefly explained in dealing with the spatial switching and differential operations of screw vectors.Then,based on the standard ideas of Lie operations,the method for kinematics analysis of parallel mechanisms is derived,and Jacobian matrix and Hessian matrix are formulated recursively and in a closed form.Then,according to the mapping relationship between the parallel joints and corresponding equivalent series joints,a forward kinematics analysis method and two inverse kinematics analysis methods of hybrid mechanisms are examined.A case study is performed to verify the calculated matrices wherein a humanoid hybrid robotic arm with a parallel-series-parallel configuration is considered as an example.The results of a simulation experiment indicate that the obtained formulas are exact and the proposed method for kinematics analysis of hybrid mechanisms is practically feasible.
文摘In this paper we explicitly determine automorphism group of filiform Lie algebra Rn to find the indecomposable solvable Lie algebras with filiform Lie algebra Rn nilradicals.We also prove that the indecomposable solvable Lie algebras with filiform Rn nilradicals is complete.
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.
文摘We study polynomial representations of finite dimensional (R or C) Lie algebras. As a total classification, we show that there are altogether three types of such nontrivial representations and give their subtle structures.
基金Supported in part by NSFC(10871125,10931006)a grant of Science and Technology Commission of Shanghai Municipality(09XD1402500)
文摘In this paper, the representation theory for the arlene Lie algebra H4 associated to the Nappi-Witten Lie algebra H4 is studied. Polynomial representations of the affine Nappi-Witten Lie algebra H4 are given.