分析了李群流形空间的几何结构、核函数和KFDA(kernel Fisher linear discriminant analysis)的原理,推导了矩阵李群内积空间的度量形式,进一步推导出5个李群核函数,并以此设计实现了KLieDA(kernel Lie group linear discriminant analy...分析了李群流形空间的几何结构、核函数和KFDA(kernel Fisher linear discriminant analysis)的原理,推导了矩阵李群内积空间的度量形式,进一步推导出5个李群核函数,并以此设计实现了KLieDA(kernel Lie group linear discriminant analysis)算法。李群核函数是适应性更广的核函数形式,由于欧氏空间的几何结构是李群的子集,李群函数不仅适用于矩阵李群的样本集,同时也适用于常规的向量形式的样本集。实验表明,基于李群函数和李群均值理论的KLieDA算法是一种快速高效的李群样本分类器。实验部分除了KLieDA的分类,还对基于李群核的SVM(support vector machine)算法进行手写体分类,结果表明,手写体图像的区域协方差李群特征具有较好的线性分布特性。展开更多
文摘分析了李群流形空间的几何结构、核函数和KFDA(kernel Fisher linear discriminant analysis)的原理,推导了矩阵李群内积空间的度量形式,进一步推导出5个李群核函数,并以此设计实现了KLieDA(kernel Lie group linear discriminant analysis)算法。李群核函数是适应性更广的核函数形式,由于欧氏空间的几何结构是李群的子集,李群函数不仅适用于矩阵李群的样本集,同时也适用于常规的向量形式的样本集。实验表明,基于李群函数和李群均值理论的KLieDA算法是一种快速高效的李群样本分类器。实验部分除了KLieDA的分类,还对基于李群核的SVM(support vector machine)算法进行手写体分类,结果表明,手写体图像的区域协方差李群特征具有较好的线性分布特性。