A classical problem in ring theory is to study conditions under which a ring is forced to become commutative. Stimulated from Jacobson's famous result, several tech- niques are developed to achieve this goal. In the ...A classical problem in ring theory is to study conditions under which a ring is forced to become commutative. Stimulated from Jacobson's famous result, several tech- niques are developed to achieve this goal. In the present note, we use a pair of rings, which are the ingredients of a Morita context, and obtain that if one of the ring is prime with the generalized (α β)-derivations that satisfy certain conditions on the trace ideal of the ring, which by default is a Lie ideal, and the other ring is reduced, then the trace ideal of the reduced ring is contained in the center of the ring. As an outcome, in case of a semi-projective Morita context, the reduced ring becomes commutative.展开更多
Let R be a 2-torsion free prime ring and L a noncommutative Lie ideal of R. Suppose that (d,σ) is a skew derivation of R such that xsd(x)xt = 0 for all x ∈ L, where s, t are fixed non-negative integers. Then d = 0.
Let di(1≤ i≤n), 51,52, 53 be nonzero derivations of a prime ring R with char R ≠ 2. Suppose that U is a Lie ideal such that u2 ∈ U for all u ∈ U. In this paper, we prove that U [U→] Z(R) when one of the foll...Let di(1≤ i≤n), 51,52, 53 be nonzero derivations of a prime ring R with char R ≠ 2. Suppose that U is a Lie ideal such that u2 ∈ U for all u ∈ U. In this paper, we prove that U [U→] Z(R) when one of the following holds: (1) d1(x1)d2(x2),… ,dn(xn)∈Z(R) (2) δ3(y)δ1(x) = δ2(x)δ3(y). Further, if g is a Lie ideal and a subring then (3) δ1(x)δ2(y) +δ2(x)δ1(y) ∈ Z(R) for all xi,x,y ∈ U.展开更多
Let R be a prime ring with characteristic di erent from two,d a derivation of R,L a noncentral Lie ideal of R,and a2R.In the present paper it is showed that if a(d(u^m)±u^m)^n for all u∈L,where m;n are xed posit...Let R be a prime ring with characteristic di erent from two,d a derivation of R,L a noncentral Lie ideal of R,and a2R.In the present paper it is showed that if a(d(u^m)±u^m)^n for all u∈L,where m;n are xed positive integers,then a=0 unless R satis es s4,the standard polynomial identity in four variables.展开更多
Let R be a prime ring with an automorphism σ≠1, an identity map. Let L be a noncentral Lie ideal of R such that \xσ, x] ∈Z for all x ∈ L, where Z is the center of R. Then L is contained in the center of R, unless...Let R be a prime ring with an automorphism σ≠1, an identity map. Let L be a noncentral Lie ideal of R such that \xσ, x] ∈Z for all x ∈ L, where Z is the center of R. Then L is contained in the center of R, unless char(R) = 2 and dimcRC = 4.展开更多
We study Lie ideals in unital AF C^*-algebras. It is shown that if a linear manifold L in an AF C^*-algebra A is a closed Lie ideal in A, then there exists a closed associative ideal I and a closed subalgebra EI of ...We study Lie ideals in unital AF C^*-algebras. It is shown that if a linear manifold L in an AF C^*-algebra A is a closed Lie ideal in A, then there exists a closed associative ideal I and a closed subalgebra EI of the canonical masa D of A such that [A,I]^- belong to L belong to I + EI, and that every closed subspace in this form is a closed Lie ideal in A.展开更多
In this paper we introduce new generalized fuzzy Lie ideals of Lie algebras and study some of their important properties.We characterize these generalized Lie ideals of Lie algebras by their level subsets.Some charact...In this paper we introduce new generalized fuzzy Lie ideals of Lie algebras and study some of their important properties.We characterize these generalized Lie ideals of Lie algebras by their level subsets.Some characterization of the generalized fuzzy Lie ideals of Lie algebras are also established.展开更多
This note proves that, if R is a prime ring of characteristic 2 with d a derivation of R and L a noncentral Lie ideal of R such that [d(u),u]^n is central, for all u ∈ L, then R must satisfy s4, the standard identi...This note proves that, if R is a prime ring of characteristic 2 with d a derivation of R and L a noncentral Lie ideal of R such that [d(u),u]^n is central, for all u ∈ L, then R must satisfy s4, the standard identity in 4 variables. The case where R is a semiprime ring is also examined by the authors. The results of the note improve Carini and Filippis's results.展开更多
Let R be a 2-torsion free prime ring, Z the center of R, and U a nonzero Lie ideal of R. If d is a derivation of R which acts as a homomorphism or an anti-homomorphism on U, then either d = 0 or U lohtein in Z. This r...Let R be a 2-torsion free prime ring, Z the center of R, and U a nonzero Lie ideal of R. If d is a derivation of R which acts as a homomorphism or an anti-homomorphism on U, then either d = 0 or U lohtein in Z. This result improves a theorem of Asma, Rehman, and Shakir.展开更多
Let R be a prime ring and m, n be fixed non-negative integers such that m+n ≠ 0. Suppose L is an (m+m+1)-power closed Lie ideal, and this means ure+n+1 ∈ L for all u ∈ L. If charR = 0 or a prime p 〉 2(m ...Let R be a prime ring and m, n be fixed non-negative integers such that m+n ≠ 0. Suppose L is an (m+m+1)-power closed Lie ideal, and this means ure+n+1 ∈ L for all u ∈ L. If charR = 0 or a prime p 〉 2(m + n), we characterize the additive maps d: L → R satisfying d(um+n+1) = (m -+n + 1)umd(u)un (resp., d(um+n+l) = umd(u)un) for all u ∈ L.展开更多
Let R be a 2-torsion free prime ring, d1 a nonzero derivation, -γ a generalized derivation associated with a nonzero derivation d2, U a square closed Lie ideal of R. In the present paper,we prove that if [di^2(u), ...Let R be a 2-torsion free prime ring, d1 a nonzero derivation, -γ a generalized derivation associated with a nonzero derivation d2, U a square closed Lie ideal of R. In the present paper,we prove that if [di^2(u), u] ∈ Z(R) or γ acts as a homomorphism (or an antihomomorphism) on U, then U Z(R).展开更多
Let R be a commutative ring with identity 1. The relations between the ideals of Lie superalgebra P(n) and the ideals of R are discussed by studying the basis, center and order ideal of P(n). All ideals of P(n) ...Let R be a commutative ring with identity 1. The relations between the ideals of Lie superalgebra P(n) and the ideals of R are discussed by studying the basis, center and order ideal of P(n). All ideals of P(n) are proved to be minimal and standard.展开更多
Let g be a complex simple Lie algebra of rank ι, b the standard Borel subalgebra. An invertible map on Ь is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension. In ...Let g be a complex simple Lie algebra of rank ι, b the standard Borel subalgebra. An invertible map on Ь is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension. In this article, by using some results of Chevalley groups, the theory of root systems and root space decomposition, the author gives an explicit description on such maps of Ь.展开更多
详细描述了Hilbert空间中原子CSL代数T(L)中的Lie理想的结构。证明了T(L)中的σ-弱算子拓扑闭子空间L是T(L)的Lie理想当且仅当存在T(L)的一个σ-弱算子拓扑闭结合理想J和T(L)的对角的中心的一个子空间E使得J0 L J+E,其中J0是J中迹为零...详细描述了Hilbert空间中原子CSL代数T(L)中的Lie理想的结构。证明了T(L)中的σ-弱算子拓扑闭子空间L是T(L)的Lie理想当且仅当存在T(L)的一个σ-弱算子拓扑闭结合理想J和T(L)的对角的中心的一个子空间E使得J0 L J+E,其中J0是J中迹为零的元素的全体。展开更多
文摘A classical problem in ring theory is to study conditions under which a ring is forced to become commutative. Stimulated from Jacobson's famous result, several tech- niques are developed to achieve this goal. In the present note, we use a pair of rings, which are the ingredients of a Morita context, and obtain that if one of the ring is prime with the generalized (α β)-derivations that satisfy certain conditions on the trace ideal of the ring, which by default is a Lie ideal, and the other ring is reduced, then the trace ideal of the reduced ring is contained in the center of the ring. As an outcome, in case of a semi-projective Morita context, the reduced ring becomes commutative.
基金The NSF(1408085QA08)of Anhui Provincialthe Key University Science Research Project(KJ2014A183)of Anhui Province of Chinathe Training Program(2014PY06)of Chuzhou University of China
文摘Let R be a 2-torsion free prime ring and L a noncommutative Lie ideal of R. Suppose that (d,σ) is a skew derivation of R such that xsd(x)xt = 0 for all x ∈ L, where s, t are fixed non-negative integers. Then d = 0.
基金Supported by the Natural Science Research Item of Anhui Province College(KJ2008B013)
文摘Let di(1≤ i≤n), 51,52, 53 be nonzero derivations of a prime ring R with char R ≠ 2. Suppose that U is a Lie ideal such that u2 ∈ U for all u ∈ U. In this paper, we prove that U [U→] Z(R) when one of the following holds: (1) d1(x1)d2(x2),… ,dn(xn)∈Z(R) (2) δ3(y)δ1(x) = δ2(x)δ3(y). Further, if g is a Lie ideal and a subring then (3) δ1(x)δ2(y) +δ2(x)δ1(y) ∈ Z(R) for all xi,x,y ∈ U.
基金Supported by Anhui Natural Science Foundation(1808085MA141908085MA03)the Key University Science Research Project of Anhui Province(KJ2018A0433).
文摘Let R be a prime ring with characteristic di erent from two,d a derivation of R,L a noncentral Lie ideal of R,and a2R.In the present paper it is showed that if a(d(u^m)±u^m)^n for all u∈L,where m;n are xed positive integers,then a=0 unless R satis es s4,the standard polynomial identity in four variables.
文摘Let R be a prime ring with an automorphism σ≠1, an identity map. Let L be a noncentral Lie ideal of R such that \xσ, x] ∈Z for all x ∈ L, where Z is the center of R. Then L is contained in the center of R, unless char(R) = 2 and dimcRC = 4.
基金the National Natural Science Foundation of China (10371016)
文摘We study Lie ideals in unital AF C^*-algebras. It is shown that if a linear manifold L in an AF C^*-algebra A is a closed Lie ideal in A, then there exists a closed associative ideal I and a closed subalgebra EI of the canonical masa D of A such that [A,I]^- belong to L belong to I + EI, and that every closed subspace in this form is a closed Lie ideal in A.
文摘In this paper we introduce new generalized fuzzy Lie ideals of Lie algebras and study some of their important properties.We characterize these generalized Lie ideals of Lie algebras by their level subsets.Some characterization of the generalized fuzzy Lie ideals of Lie algebras are also established.
基金Partially supported by China Postdoctoral Science Foundation
文摘This note proves that, if R is a prime ring of characteristic 2 with d a derivation of R and L a noncentral Lie ideal of R such that [d(u),u]^n is central, for all u ∈ L, then R must satisfy s4, the standard identity in 4 variables. The case where R is a semiprime ring is also examined by the authors. The results of the note improve Carini and Filippis's results.
文摘Let R be a 2-torsion free prime ring, Z the center of R, and U a nonzero Lie ideal of R. If d is a derivation of R which acts as a homomorphism or an anti-homomorphism on U, then either d = 0 or U lohtein in Z. This result improves a theorem of Asma, Rehman, and Shakir.
文摘Let R be a prime ring and m, n be fixed non-negative integers such that m+n ≠ 0. Suppose L is an (m+m+1)-power closed Lie ideal, and this means ure+n+1 ∈ L for all u ∈ L. If charR = 0 or a prime p 〉 2(m + n), we characterize the additive maps d: L → R satisfying d(um+n+1) = (m -+n + 1)umd(u)un (resp., d(um+n+l) = umd(u)un) for all u ∈ L.
基金Supported by the Natural Science Research Foundation of Anhui Provincial Education Department (GrantNos.KJ2008B013 KJ2010B200)
文摘Let R be a 2-torsion free prime ring, d1 a nonzero derivation, -γ a generalized derivation associated with a nonzero derivation d2, U a square closed Lie ideal of R. In the present paper,we prove that if [di^2(u), u] ∈ Z(R) or γ acts as a homomorphism (or an antihomomorphism) on U, then U Z(R).
文摘Let R be a commutative ring with identity 1. The relations between the ideals of Lie superalgebra P(n) and the ideals of R are discussed by studying the basis, center and order ideal of P(n). All ideals of P(n) are proved to be minimal and standard.
基金Supported by the Doctor Foundation of Henan Polytechnic University(B2010-93)Supported by the National Natural Science Foundation of China(11126121)+2 种基金Supported by the Natural Science Foundation of Henan Province(112300410120)Supported by the Natural Science Research Program of Education Department of Henan Province(201lB110016)Supported by the Applied Mathematics Provincial-level Key Discipline of Henan Province of Henau Polytechuic University
文摘Let g be a complex simple Lie algebra of rank ι, b the standard Borel subalgebra. An invertible map on Ь is said to preserve abelian ideals if it maps each abelian ideal to some such ideal of the same dimension. In this article, by using some results of Chevalley groups, the theory of root systems and root space decomposition, the author gives an explicit description on such maps of Ь.