The dynamics of satellites formation is of great interest for the space mission. This work discusses a more efficient model of the relative motion dynamics of satellites formation. The model is based on employing the ...The dynamics of satellites formation is of great interest for the space mission. This work discusses a more efficient model of the relative motion dynamics of satellites formation. The model is based on employing the concepts restricted three-body problem (R3BP) and for more accuracy, it considers the effects of both oblateness and radiation pressure on deputy relative motion w.r.t the chief satellite. A model of deputy relative motion w.r.t the chief satellite is derived in the local-vertical local-horizontal system and simplified assuming the concept of the circular restricted three-body problem (CR3BP). The deputy equations of motion were rewritten in the form of recurrence relations and solved numerically using the Lie series approach. Assuming that the formation is revolving around the Moon in the Earth-Moon system, the effects of both oblateness and radiation pressure on the deputy satellite orbit were assessed through a particular example of satellites formation. A comparison between the perturbed and unperturbed R3BP shows a significant difference in the deputy relative position that has to be considered for the formation dynamics.展开更多
We consider the tensor product π_α ? π_βof complementary series representations π_α and π_β of classical rank one groups SO_0(n, 1), SU(n, 1) and Sp(n, 1). We prove that there is a discrete component π_(α+β...We consider the tensor product π_α ? π_βof complementary series representations π_α and π_β of classical rank one groups SO_0(n, 1), SU(n, 1) and Sp(n, 1). We prove that there is a discrete component π_(α+β)for small parameters α and β(in our parametrization). We prove further that for SO_0(n, 1) there are finitely many complementary series of the form π_(α+β+2j,)j = 0, 1,..., k, appearing in the tensor product π_α ? π_βof two complementary series π_α and π_β, where k = k(α, β, n) depends on α, β and n.展开更多
文摘The dynamics of satellites formation is of great interest for the space mission. This work discusses a more efficient model of the relative motion dynamics of satellites formation. The model is based on employing the concepts restricted three-body problem (R3BP) and for more accuracy, it considers the effects of both oblateness and radiation pressure on deputy relative motion w.r.t the chief satellite. A model of deputy relative motion w.r.t the chief satellite is derived in the local-vertical local-horizontal system and simplified assuming the concept of the circular restricted three-body problem (CR3BP). The deputy equations of motion were rewritten in the form of recurrence relations and solved numerically using the Lie series approach. Assuming that the formation is revolving around the Moon in the Earth-Moon system, the effects of both oblateness and radiation pressure on the deputy satellite orbit were assessed through a particular example of satellites formation. A comparison between the perturbed and unperturbed R3BP shows a significant difference in the deputy relative position that has to be considered for the formation dynamics.
文摘We consider the tensor product π_α ? π_βof complementary series representations π_α and π_β of classical rank one groups SO_0(n, 1), SU(n, 1) and Sp(n, 1). We prove that there is a discrete component π_(α+β)for small parameters α and β(in our parametrization). We prove further that for SO_0(n, 1) there are finitely many complementary series of the form π_(α+β+2j,)j = 0, 1,..., k, appearing in the tensor product π_α ? π_βof two complementary series π_α and π_β, where k = k(α, β, n) depends on α, β and n.