This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin h...This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.展开更多
The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The pa...The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.展开更多
For a given truncated Painleve′ expansion of an arbitrary nonlinear Painleve′ integrable system, the residue with respect to the singularity manifold is known as a nonlocal symmetry, called the residual symmetry, wh...For a given truncated Painleve′ expansion of an arbitrary nonlinear Painleve′ integrable system, the residue with respect to the singularity manifold is known as a nonlocal symmetry, called the residual symmetry, which is proved to be localized to Lie point symmetries for suitable prolonged systems. Taking the Korteweg–de Vries equation as an example, the n-th binary Darboux–Ba¨cklund transformation is re-obtained by the Lie point symmetry approach accompanied by the localization of the n-fold residual symmetries.展开更多
Using a new symmetry group theory, the transformation groups and symmetries of the general Broer-Kaup system are obtained. The results are much simpler than those obtained via the standard approaches.
Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dim...Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.展开更多
The form invariance and the Lie symmetry of the generalized Hamiltonian system are studied. Firstly, de?nitions and criteria of the form invariance and the Lie symmetry of the system are given. Next, the r...The form invariance and the Lie symmetry of the generalized Hamiltonian system are studied. Firstly, de?nitions and criteria of the form invariance and the Lie symmetry of the system are given. Next, the relation between the form invariance and the Lie symmetry is studied. Finally, two examples are given to illustrate the application of the results.展开更多
Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-d...Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.展开更多
Lie groups of bi-M<span style="white-space:nowrap;">ö</span>bius transformations are known and their actions on non orientable <em>n</em>-dimensional complex manifolds have b...Lie groups of bi-M<span style="white-space:nowrap;">ö</span>bius transformations are known and their actions on non orientable <em>n</em>-dimensional complex manifolds have been studied. In this paper, <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are introduced and similar problems as those related to bi-M<span style="white-space:nowrap;">ö</span>bius transformations are tackled. In particular, it is shown that the subgroup generated by every <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformation is a discrete group. Cyclic subgroups are exhibited. Vector valued <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are also studied.展开更多
In this paper, a better asymptotic order of Fourier transform on SL(2,R) is obtained by using classical analysis and Lie analysis comparing with that of [5],[6] ,and the Plancherel theorem on C2i(SL(2,R)) is also obta...In this paper, a better asymptotic order of Fourier transform on SL(2,R) is obtained by using classical analysis and Lie analysis comparing with that of [5],[6] ,and the Plancherel theorem on C2i(SL(2,R)) is also obtained as an application.展开更多
文摘This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.
文摘The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.
基金supported by the National Natural Science Foundation of China(Grant Nos.11675055,11175092,and 11205092)the Program from Shanghai Knowledge Service Platform for Trustworthy Internet of Things(Grant No.ZF1213)K C Wong Magna Fund in Ningbo University
文摘For a given truncated Painleve′ expansion of an arbitrary nonlinear Painleve′ integrable system, the residue with respect to the singularity manifold is known as a nonlocal symmetry, called the residual symmetry, which is proved to be localized to Lie point symmetries for suitable prolonged systems. Taking the Korteweg–de Vries equation as an example, the n-th binary Darboux–Ba¨cklund transformation is re-obtained by the Lie point symmetry approach accompanied by the localization of the n-fold residual symmetries.
文摘Using a new symmetry group theory, the transformation groups and symmetries of the general Broer-Kaup system are obtained. The results are much simpler than those obtained via the standard approaches.
文摘Analytic atlases on <img src="Edit_948e45b7-cbef-425e-bb79-28648b859994.png" width="23" height="22" alt="" /> can be easily defined making it an <em>n</em>-dimensional complex manifold. Then with the help of bi-M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations in complex coordinates Abelian groups are constructed making this manifold a Lie group. Actions of Lie groups on differentiable manifolds are well known and serve different purposes. We have introduced in previous works actions of Lie groups on non orientable Klein surfaces. The purpose of this work is to extend those studies to non orientable <em>n</em>-dimensional complex manifolds. Such manifolds are obtained by factorizing <img src="Edit_7e5721ee-bb7f-4224-bd52-7d4641ac1c73.png" width="23" height="22" alt="" /> with the two elements group of a fixed point free antianalytic involution of <img src="Edit_ddfdac64-b296-48c5-9bb2-932eb3d76008.png" width="23" height="22" alt="" />. Involutions <strong>h(z)</strong> of this kind are obtained linearly by composing special M<span style="white-space:nowrap;"><span style="white-space:nowrap;">ö</span></span>bius transformations of the planes with the mapping <img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="89" height="24" alt="" /><img src="Edit_4cda269a-9399-41ae-a5da-0c9d18a419ab.png" width="85" height="22" alt="" />. A convenient partition of <img src="Edit_9e899708-41b0-4351-a12b-cc6efb5b1581.png" width="23" height="22" alt="" /> is performed which helps defining an internal operation on <img src="Edit_7cd42987-68f8-4e4c-9382-cbc68b56377e.png" width="49" height="26" alt="" /> and finally actions of the previously defined Lie groups on the non orientable manifold <img src="Edit_5740b48c-f9ea-438d-a87d-8cdc1f83662b.png" width="49" height="25" alt="" /> are displayed.
基金Project supported by the National Natural Science Foundation of China (Nos.19972010 and 10272021).
文摘The form invariance and the Lie symmetry of the generalized Hamiltonian system are studied. Firstly, de?nitions and criteria of the form invariance and the Lie symmetry of the system are given. Next, the relation between the form invariance and the Lie symmetry is studied. Finally, two examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672143) and the Natural Science Foundation of Henan Provinces China ((]rant Nos 0511022200 and 072300440220).
文摘Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.
文摘Lie groups of bi-M<span style="white-space:nowrap;">ö</span>bius transformations are known and their actions on non orientable <em>n</em>-dimensional complex manifolds have been studied. In this paper, <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are introduced and similar problems as those related to bi-M<span style="white-space:nowrap;">ö</span>bius transformations are tackled. In particular, it is shown that the subgroup generated by every <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformation is a discrete group. Cyclic subgroups are exhibited. Vector valued <em>m</em>-M<span style="white-space:nowrap;">ö</span>bius transformations are also studied.
文摘In this paper, a better asymptotic order of Fourier transform on SL(2,R) is obtained by using classical analysis and Lie analysis comparing with that of [5],[6] ,and the Plancherel theorem on C2i(SL(2,R)) is also obtained as an application.