期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
THE BANACH-LIE GROUP OF LIE TRIPLE AUTOMORPHISMS OF AN H^*-ALGEBRA^* 被引量:1
1
作者 A.J.Calderón Martín C.Martín González 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1219-1226,共8页
We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtain... We study the Banach-Lie group Ltaut(A) of Lie triple automorphisms of a complex associative H^*-algebra A. Some consequences about its Lie algebra, the algebra of Lie triple derivations of A, Ltder(A), are obtained. For a topologically simple A, in the infinite-dimensional case we have Ltaut(A)0 = Aut(A) implying Ltder(A) = Der(A). In the finite-dimensional case Ltaut(A)0 is a direct product of Aut(A) and a certain subgroup of Lie derivations δ from A to its center, annihilating commutators. 展开更多
关键词 Banach-lie group lie triple automorphism lie triple derivation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部