A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) ...A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) how a subsequent 2-1 mapping (projection) of P16 onto a 8D-hyperplane might furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and such that one can capture the chain sequence of polytopes 241,231,221,211in D=8,7,6,5dimensions, leading, respectively, to the sequence of Coxeter groups E8,E7,E6,SO(10)which are putative GUT group candidates. An embedding of the E8⊕E8and E8⊕E8⊕E8lattice into the Barnes-Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From the 16D lattice E8⊕E8one can generate two separate families of Elser-Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-and-project” method from 8D to 4D in each separate E8 lattice. Therefore, one obtains in this fashion the Cartesian product of two Elser-Sloane QC’s Q×Qspanning an 8D space. Similarly, from the 24D lattice E8⊕E8⊕E8one can generate the Cartesian product of three Elser-Sloane 4D quasicrystals (QC’s) Q×Q×Qwith H4 symmetry and spanning a 12D space.展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent...Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.展开更多
文摘A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) how a subsequent 2-1 mapping (projection) of P16 onto a 8D-hyperplane might furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and such that one can capture the chain sequence of polytopes 241,231,221,211in D=8,7,6,5dimensions, leading, respectively, to the sequence of Coxeter groups E8,E7,E6,SO(10)which are putative GUT group candidates. An embedding of the E8⊕E8and E8⊕E8⊕E8lattice into the Barnes-Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From the 16D lattice E8⊕E8one can generate two separate families of Elser-Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-and-project” method from 8D to 4D in each separate E8 lattice. Therefore, one obtains in this fashion the Cartesian product of two Elser-Sloane QC’s Q×Qspanning an 8D space. Similarly, from the 24D lattice E8⊕E8⊕E8one can generate the Cartesian product of three Elser-Sloane 4D quasicrystals (QC’s) Q×Q×Qwith H4 symmetry and spanning a 12D space.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
文摘Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group Gk, defined by the nilpotent Lie algebra g/ak, where g is the Lie algebra of G, and ak is an ideal of g. Then, J gives rise to an almost complex structure Jk on Gk. The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure Jk on the nilpotent Lie group Gk, and Jk is also nilpotent.